It is assumed that spatial memory contributes crucially to animal cognition since animals' habitats entail a large number of dispersed and unpredictable food sources. Spatial memory has been investigated under controlled conditions, with different species showing and different conditions leading to varying performance levels. However, the number of food sources investigated is very low compared to what exists under natural conditions, where food resources are so abundant that it is difficult to precisely identify what is available. By using a detailed botanical map containing over 12,499 trees known to be used by the Taï chimpanzees, we created virtual maps of all productive fruit trees to simulate potential strategies used by wild chimpanzees to reach resources without spatial memory. First, we simulated different assumptions concerning the chimpanzees' preference for a particular tree species, and, second, we varied the detection field to control for the possible use of smell to detect fruiting trees. For all these assumptions, we compared simulated distance travelled, frequencies of trees visited, and revisit rates with what we actually observed in wild chimpanzees. Our results show that chimpanzees visit rare tree species more frequently, travel shorter distances to reach them, and revisit the same trees more often than if they had no spatial memory. In addition, we demonstrate that chimpanzees travel longer distances to reach resources where they will eat for longer periods of time, and revisit resources more frequently where they ate for a long period of time during their first visit. Therefore, this study shows that forest chimpanzees possess a precise spatial memory which allows them to remember the location of numerous resources and use this information to select the most attractive resources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762532PMC
http://dx.doi.org/10.1007/s10071-009-0239-7DOI Listing

Publication Analysis

Top Keywords

spatial memory
20
forest chimpanzees
8
remember location
8
location numerous
8
fruit trees
8
food sources
8
wild chimpanzees
8
reach resources
8
tree species
8
distances reach
8

Similar Publications

Purpose Of The Review: Clinical trials suggest that dietary anthocyanins may enhance cognitive function. This systematic literature review and meta-analysis aimed to identify the effect of anthocyanin on cognition and mood in adults.

Recent Findings: Using a random-effects model, Hedge's g scores were calculated to estimate the effect size.

View Article and Find Full Text PDF

Whether working memory (WM) is encoded by persistent activity using attractors or by dynamic activity using transient trajectories has been debated for decades in both experimental and modeling studies, and a consensus has not been reached. Even though many recurrent neural networks (RNNs) have been proposed to simulate WM, most networks are designed to match respective experimental observations and show either transient or persistent activities. Those few which consider networks with both activity patterns have not attempted to directly compare their memory capabilities.

View Article and Find Full Text PDF

Our understanding of the meningeal immune system has recently burgeoned, particularly regarding how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains limited. This study highlights the heterogeneous, polyfunctional regulatory T cell (T) compartment in the meninges.

View Article and Find Full Text PDF

In this study, we aimed to explore the sex-specific effects and mechanisms of sevoflurane exposure on the neural development of pubertal rats on the basis of M1/M2 microglial cell polarisation and related signalling pathways. A total of 48 rat pups (24 males and 24 females) were assigned to the 0- or 2-h sevoflurane exposure group on the seventh day after birth. The Morris water maze (MWM) test was subsequently conducted on the 32nd to 38th days after birth.

View Article and Find Full Text PDF

Introduction: Intranasal (IN) deferoxamine (DFO) has emerged over the past decade as a promising therapeutic in preclinical experiments across neurodegenerative and neurovascular diseases. As an antioxidant iron chelator, its mechanisms are multimodal, involving the binding of brain iron and the consequent engagement of several pathways to counter pathogenesis across multiple diseases. We and other research groups have shown that IN DFO rescues cognitive impairment in several rodent models of Alzheimer Disease (AD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!