The recalcitrance of lignocellulosic biomass to enzymatic release of sugars (saccharification) currently limits its use as feedstock for biofuels. Enzymatic hydrolysis of untreated aspen wood releases only 21.8% of the available sugars due primarily to the lignin barrier. Nature uses oxidative enzymes to selectively degrade lignin in lignocellulosic biomass, but thus far, natural enzymes have been too slow for industrial use. In this study, oxidative pretreatment with commercial peracetic acid (470 mM) removed 40% of the lignin (from 19.9 to 12.0 wt.% lignin) from aspen and enhanced the sugar yields in subsequent enzymatic hydrolysis to about 90%. Increasing the amount of lignin removed correlated with increasing yields of sugar release. Unfortunately, peracetic acid is expensive, and concentrated forms can be hazardous. To reduce costs and hazards associated with using commercial peracetic acid, we used a hydrolase to catalyze the perhydrolysis of ethyl acetate generating 60-70 mM peracetic acid in situ as a pretreatment to remove lignin from aspen wood. A single pretreatment was insufficient, but multiple cycles (up to eight) removed up to 61.7% of the lignin enabling release of >90% of the sugars during saccharification. This value corresponds to a predicted 581 g of fermentable sugars from 1 kg of aspen wood. Improvements in the enzyme stability are needed before the enzymatically generated peracetic acid is a commercially viable alternative.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-009-8639-3 | DOI Listing |
Sci Rep
December 2024
Department of Medical Microbiology and Infection Prevention, Amsterdam UMC - Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
Vaginal reconstruction is necessary for various congenital and acquired conditions, including vaginal aplasia, trauma, tumors, and gender incongruency. Current surgical and non-surgical treatments often result in significant complications. Decellularized vaginal matrices (DVMs) from human tissue offer a promising alternative, but require effective sterilization to ensure safety and functionality.
View Article and Find Full Text PDFEnviron Technol
December 2024
School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China.
Ascorbic acid (AA) was used as a reducing agent to improve the Fe(III)-activated peracetic acid (PAA) system for the removal of sulfamethoxazole (SMX) in this work. The efficiency, influencing factors and mechanism of SMX elimination in the AA/Fe(III)/PAA process were studied. The results exhibited that AA facilitated the reduction of Fe(III) to Fe(II) and subsequently improved the activation of PAA and HO.
View Article and Find Full Text PDFAppl Biosaf
December 2024
National Microbiology, Public Health Agency of Canada, Winnipeg, Canada.
Introduction: Positive pressure breathing-air-fed protective suits are used in biosafety level 4 (BSL-4) containment laboratories as personal protective equipment to protect workers from high-consequence pathogens. However, even with the use of primary containment devices, the exterior surfaces of these suits could potentially become contaminated with those pathogens and result in their inadvertent removal from containment. To address the risk of such pathogens escaping from containment via contaminated protective suits, these suits are decontaminated in a disinfectant chemical shower situated in an anteroom prior to exiting the BSL-4 laboratory.
View Article and Find Full Text PDFAppl Biosaf
December 2024
Neuroinfection Laboratory Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
Background: Inactivation of infectious liquid waste can be performed by different means, including autoclaving or chemical inactivation. Autoclaving is most widely used, but cannot always be implemented, so that chemical inactivation is a possible alternative. However, its efficacy has to be proven by in-house validation.
View Article and Find Full Text PDFLett Appl Microbiol
December 2024
Cantel Medical Italy, a STERIS Company, Via Laurentina, 169, 00071 Pomezia, Italy.
This work aimed to improve some steps of the existing guidelines of the European Standards to obtain an Aspergillus brasiliensis ATCC 16404 spore suspension with >75% spiny spores without mycelia and a concentration of at least 1.5×108 CFU ml-1. Several manufacturers' combinations "strain/medium" were assessed in terms of yield of spiny spores.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!