Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A series of 3-(4-alkoxypheny)propanoic acid derivatives was prepared as candidate peroxisome proliferator-activated receptor (PPAR) delta-selective agonists, based on our previously discovered potent human PPARalpha/delta dual agonist TIPP-401 as a lead compound. Structure-activity relationship studies clearly indicated the importance of the chain length of the alkoxy group at the 4-position, and the n-butoxy compound exhibited the most potent PPARdelta transactivation activity and highest PPARdelta selectivity. The (S)-enantiomer of a representative compound (TIPP-204) exhibited extremely potent PPARdelta transactivation activity, comparable to that of the known PPARdelta-selective agonist GW-501516. To understand why TIPP-204 shows high selectivity for hPPARdelta among hPPAR subtypes, and why TIPP-401, a structurally related compound, is a hPPARalpha/delta dual agonist, computational docking of TIPP-401 to the ligand binding domains of hPPARalpha and hPPARdelta and X-ray structure analysis of TIPP-204-hPPARdelta ligand binding domain were carried out. The results allowed identification of certain amino acids as putative determinants of the hPPARdelta selectivity of TIPP-204. To confirm the significance of these amino acids, GAL4-fusion proteins of mutated hPPARdeltas and hPPARalphas were prepared, and the transactivation activity of TIPP-204 toward the mutants was evaluated. The amino acid(s) that predominantly influence the potency and selectivity of TIPP-204 are different from that of the well-known PPARdelta-selective agonist GW-501516, which belongs to a different chemical class. The significance of these amino acids was confirmed by the examination of the complex structure between TIPP-204 and hPPARdelta. The results revealed several interactions relevant to the hPPARdelta-selectivity of the two ligands and will be useful for logical hPPARdelta ligand design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/yakushi.129.709 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!