Here, we present extracellular matrix (ECM) powders derived from human adipose tissue as injectable cell delivery carriers for adipose tissue engineering. We postulate that human adipose tissue may provide an ideal biomaterial because it contains large amounts of ECM components including collagen. Fresh human adipose tissue was obtained by a simple surgical operation (liposuction). After removing blood and oil components, the tissue was homogenized, centrifuged, freeze-dried, and ground to powders by milling. In an in vitro study, the human ECM powders were highly effective for promotion of cell attachment and proliferation for three-dimensional (3D) cell culture. In in vivo studies, suspensions of human ECM powders containing human adipose-derived stem cells (hASCs) were subcutaneously injected into nude mice. At eight weeks post-injection, numerous blood vessels were observed and the newly formed tissue exhibited adipogenesis with accumulated intracellular small lipid droplets. Overall, the grafts showed well-organized adipose tissue constructs without any signs of tissue necrosis, cystic spaces, or fibrosis. We believe that human ECM powders could act as efficient injectable biomaterials for tissue engineering and have great potential for meeting clinical challenges in regenerative medicine, particularly in relation to adipose tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2009.05.034 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!