Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Glis3 is a member of the Gli-similar subfamily. GLIS3 mutations in humans lead to neonatal diabetes, hypothyroidism, and cystic kidney disease. We generated Glis3-deficient mice by gene-targeting. The Glis3(-/-) mice had significant increases in the basal blood sugar level during the first few days after birth. The high levels of blood sugar are attributed to a decrease in the Insulin mRNA level in the pancreas that is caused by impaired islet development and the subsequent impairment of Insulin-producing cell formation. The pancreatic phenotypes indicate that the Glis3-deficient mice are a model for GLIS3 mutation and diabetes mellitus in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2009.05.039 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!