https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=19481535&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 194815352009093020211203
1872-624012812009Jul24Brain researchBrain ResExtracellular norepinephrine, norepinephrine receptor and transporter protein and mRNA levels are differentially altered in the developing rat brain due to dietary iron deficiency and manganese exposure.1141-1410.1016/j.brainres.2009.05.050Manganese (Mn) is an essential trace element, but overexposure is characterized by Parkinson's like symptoms in extreme cases. Previous studies have shown that Mn accumulation is exacerbated by dietary iron deficiency (ID) and disturbances in norepinephrine (NE) have been reported. Because behaviors associated with Mn neurotoxicity are complex, the goal of this study was to examine the effects of Mn exposure and ID-associated Mn accumulation on NE uptake in synaptosomes, extracellular NE concentrations, and expression of NE transport and receptor proteins. Sprague-Dawley rats were assigned to four dietary groups: control (CN; 35 mg Fe/kg diet), iron-deficient (ID; 6 mg Fe/kg diet), CN with Mn exposure (via the drinking water; 1 g Mn/L) (CNMn), and ID with Mn (IDMn). (3)H-NE uptake decreased significantly (R=-0.753, p=0.001) with increased Mn concentration in the locus coeruleus, while decreased Fe was associated with decreased uptake of (3)H-NE in the caudate putamen (R=0.436, p=0.033) and locus coeruleus (R=0.86; p<0.001). Extracellular concentrations of NE in the caudate putamen were significantly decreased in response to Mn exposure and ID (p<0.001). A diverse response of Mn exposure and ID was observed on mRNA and protein expression of NE transporter (NET) and alpha(2) adrenergic receptor. For example, elevated brain Mn and decreased Fe caused an approximate 50% decrease in NET and alpha(2) adrenergic receptor protein expression in several brain regions, with reductions in mRNA expression also observed. These data suggest that Mn exposure results in a decrease in NE uptake and extracellular NE concentrations via altered expression of transport and receptor proteins.AndersonJoel GJGDepartment of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA.FordahlSteven CSCCooneyPaula TPTWeaverTara LTLColyerChrista LCLEriksonKeith MKMengR15 ES013791ESNIEHS NIH HHSUnited StatesR15 NS061309NSNINDS NIH HHSUnited StatesR15 NS061309-01NSNINDS NIH HHSUnited StatesES 013791-01ESNIEHS NIH HHSUnited StatesJournal ArticleResearch Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov't20090528
NetherlandsBrain Res00455030006-89930Norepinephrine Plasma Membrane Transport Proteins0RNA, Messenger0Receptors, Adrenergic, alpha-20Slc6a2 protein, rat10028-17-8Tritium42Z2K6ZL8PManganeseE1UOL152H7IronX4W3ENH1CVNorepinephrineIMAnimalsBlotting, WesternBraindrug effectsgrowth & developmentmetabolismCaudate Nucleusdrug effectsgrowth & developmentmetabolismExtracellular SpacemetabolismIronbloodIron DeficienciesLocus Coeruleusdrug effectsgrowth & developmentmetabolismMaleManganesebloodtoxicityMicrodialysisModels, NeurologicalNorepinephrinemetabolismNorepinephrine Plasma Membrane Transport ProteinsmetabolismPolymerase Chain ReactionPutamendrug effectsgrowth & developmentmetabolismRNA, MessengermetabolismRandom AllocationRatsReceptors, Adrenergic, alpha-2metabolismTritium
200919200951200951920096290200962902009101602010724ppublish19481535NIHMS120182PMC272384910.1016/j.brainres.2009.05.050S0006-8993(09)01090-7Anderson JG, Fordahl SC, Cooney PT, Erikson KM. Manganese exposure alters extracellular GABA, GABA receptor and transporter protein and mRNA levels in the developing rat brain. NeuroToxicology. 2008;29:1044–1053.PMC321663318771689Anderson JG, Cooney PT, Erikson KM. Brain manganese accumulation is inversely related to GABA uptake in male and female rats. Tox. Sci. 2007;95:188–195.17032702Andrade R, Aghajanian GK. Locus coeruleus activity in vitro: intrinsic regulation by a calcium-dependent potassium conductance but not α2-adrenoceptors. J Neurosci. 1984;4:161–170.PMC65647436319626Aschner M, Erikson KM, Dorman DC. Manganese dosimetry: species differences and implications for neurotoxicity. Crit. Rev. Tox. 2005;35:1–32.15742901Autissier N, Rochette L, Dumas P, Beley A, Loireau A, Bralet J. Dopamine and norepinephrine turnover in various regions of the rat brain after chronic manganese chloride administration. Toxicology. 1982;24:175–182.7135412Beard JL, Wiesinger JA, Jones BC. Cellular iron concentrations directly affect the expression levels of norepinephrine transporter in PC12 cells and rat brain tissue. Brain Res. 2006;1092:47–58.16650837Beard JL. Iron biology in immune function, muscle metabolism, and neuronal functioning. J Nutr. 2001;131:568s–579s.11160590Beard JL, Chen Q, Connor JR, Jones BC. Altered monoamine metabolism in caudate putamen of iron-deficient rats. Pharmacol. Biochem. Behav. 1994;48:621–624.7524105Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Rev. 2003;42:33–84.12668290Bianco LE, Wiesinger J, Earley CJ, Jones BC, Beard JL. Iron deficiency alters dopamine uptake and response to L-DOPA injection in Sprague-Dawley rats. J Neurochem. 2008;106:205–215.18363828Burdo JR, Martin J, Menzies SL, Dolan KG, Romano MA, Fletcher RJ, Garrick MD, Garrick LM, Connor JR. Cellular distribution of iron in the brain of the Belgrade rat. Neuroscience. 1999;93:1189–1196.10473284Burhans MS, Dailey C, Beard Z, Wiesinger J, Murray-Kolb L, Jones BC, Beard JL. Iron deficiency: differential effects on monoamine transporters. Nutr. Neurosci. 2005;8:31–38.15909765Chandra SV, Murthy RC, Husain T, Bansal SK. Effect of interaction of heavy metals on (Na+-K+) ATPase and the uptake of 3H-DA and 3H-NA in rat brain synaptosomes. Acta Pharmacol. et Toxicol. 1984;54:210–213.6326468Chandra SV, Shukla GS. Effect of manganese on synthesis of brain catecholamines in growing rats. Pharmacol. et Toxicol. 1981a;48:349–354.7336950Chandra SV, Shukla GS. Concentrations of striatal catecholamines in rats given manganese chloride through drinking water. J. Neurochem. 1981b;36:683–687.7463083Chandra SV, Shukla GS, Saxena DK. Manganese-induced behavioral dysfunction an its neurochemical mechanism in growing mice. J. Neurochem. 1979;33:1217–1221.552401Chandra SV, Shukla GS. Role of iron deficiency in inducing susceptibility to manganese toxicity. Arch. Toxicol. 1976;35:319–323.989299Chen Z, Wu J, Baker GB, Parent M, Dovichi NJ. Application of capillary electrophoresis with laser-induced fluorescence detection to the determinations of biogenic amines and amino acids in brain microdialysate and homogenate samples. J Chromatography A. 2001;914:293–298.11358224Cotman CW, Foster AC, Lanhorn T. An overview of glutamate as a neurotransmitter. Adv. Biochem. Psychopharmacol. 1981;27:1–27.6108689Davis C, Wolf T, Greger J. Varying levels of manganese and iron affect absorption and gut endogenous losses of manganese by rats. J Nutr. 1992;122:1300–1308.1588448Deskin R, Bursian SJ, Edens FW. Neurochemical alterations induced by manganese chloride in neonatal rats. Neurotoxicology. 1981;2:65–73.15622725Dickinson SD, Sabeti J, Larson GA, Giardina K, Rubinstein M, Kelly MA, Grandy DK, Low MJ, Gerhardt GA, Zahniser NR. Dopamine D2 receptor-deficient mice exhibit decreased dopamine transporter function but no changes in dopamine release in dorsal striatum. J Neurochem. 1999;72:148–156.9886065Erikson KM, Syversen T, Steinnes E, Aschner M. Globus pallidus: a target brain region for divalent metal accumulation associated with dietary iron deficiency. J. Nutr Biochem. 2004;15:335–341.15157939Erikson KM, Shihabi ZK, Aschner JL, Aschner M. Manganese accumulates in iron-deficient rat brain regions in a heterogeneous fashion and is associated with neurochemical alterations. Biolog. Trace Elem. Res. 2002;87:143–156.12117224Erikson KM, Jones BC, Hess EJ, Zhang Q, Beard JL. Iron deficiency decreases dopamine D1 and D2 receptors in rat brain. Pharmacol. Biochem. Behav. 2001;69:409–418.11509198Erikson KM, Jones BC, Beard JL. Iron deficiency alters dopamine transporter functioning in rat striatum. J. Nutr. 2000;130:2831–2837.11053528Expósito I, Del Arco A, Segovia G, Mora F. Endogenous dopamine increases extracellular concentrations of glutamate and GABA in striatum of the freely moving rat: involvement of D1 and D2 dopamine receptors. Neurochem. Res. 1999;24:849–856.10403624Finley JW. Manganese absorption and retention by young women is associated with serum ferritin concentration. Am. J. Clin. Nutr. 1999;70:37–43.10393136Galindo A, Del Arco A, Mora F. Endogenous GABA potentiates the potassium-induced release of dopamine in striatum of the freely moving rat: a microdialysis study. Brain Res. Bull. 1999;50:209–214.10566983Garcia SJ, Gellein K, Syversen T, Aschner M. Iron deficient and manganese supplemented diets alter metals and transporters in the developing rat brain. Tox. Sci. 2007;95:205–214.17060373Garrick MD, Dolan KG, Horbinski C, Ghio AJ, Higgins D, Porubcin M, Moore EG, Hainsworth LN, Umbreit JN, Conrad ME, Feng L, Lis A, Roth JA, Singleton S, Garrick LM. DMT1: a mammalian transporter for multiple metals. BioMetals. 2003;16:41–54.12572663Gether U, Andersen PH, Larsson EM, Schousboe A. Neurotransmitter transporters: molecular function of important drug targets. Trends Pharmcol. Sci. 2006;27:375–383.16762425Gunshin H, Allerson CR, Polycarpou-Schwarz M, Rofts A, Rogers JT, Kishi F, Hentze MW, Rouault TA, Andrews NC, Hediger MA. Iron-dependent regulation of the divalent metal ion transporter. FEBS Lett. 2001;509:309–316.11741608Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA. Cloning and characterization of a mammalian proton-coupled metal transporter. Nature. 1997;388:482–488.9242408Hazell AS, Normandin L, Nguyen B, Kennedy G. Upregulation of ‘peripheral-type’ benzodiazepine receptors in the globus pallidus in a sub-acute rat model of manganese neurotoxicity. Neurosci. Lett. 2003;349:13–16.12946575Hazell AS. Astrocytes and manganese neurotoxicity. Neurochem. Int. 2002;41:271–277.12106778Hurley LS, Keen CL. Manganese. In: Underwood E, Mertz W, editors. Trace Elements in Human Health and Animal Nutrition. New York, NY: Academic Press; 1987. pp. 185–223.Kennedy SD, Bryant RG. Manganese-deoxyribonucleic acid binding modes. Nuclear magnetic relaxation dispersion results. Biophys. J. 1986;50:669–676.PMC13298453779006Kondakis XG, Makris N, Leotsinidis M, Prinou M, Papapetropoulos T. Possible health effects of high manganese concentration in drinking water. Arch. Environ. Health. 1989;44:175–178.2751354Kontur PJ, Fechter LD. Brain regional manganese levels and monoamine metabolism in manganese-treated neonatal rats. Neurotoxicol. Teratol. 1988;10:295–303.3226372Kramer-Stickland K, Edmonds A, Bair WB, III, Bowden GT. Inhibitory effects of deferoxamine on UVB-induced AP-1 transactivation. Carcinogenesis. 1999;20:2137–2142.10545417Kwik-Uribe CL, Golub MS, Keen CL. Chronic marginal iron intakes during early development in mice alter brain iron concentrations and behavior despite postnatal iron supplementation. J. Nutr. 2000;130:2040–2048.10917923Lai JCK, Lim L, Davison AN. Effects of Cd2+, Mn2+, and Al3+ on rat brain synaptosomal uptake of noradrenalin and serotonin. J. Inorg. Biochem. 1982;17:215–225.7175524Latchoumycandane C, Anantharam V, Kitazawa M, Yang Y, Kanthasamy A, Kanthasamy AG. Protein kinase Cδ is a key downstream mediator of manganese-induced apoptosis in dopaminergic neuronal cells. J. Pharmacol. Exper. Therap. 2005;313:46–55.15608081Mandela P, Ordway GA. The norepinephrine transporter and its regulation. J. Neurochem. 2006;97:310–333.16539676Marien MR, Colpaert FC, Rosenquist AC. Noradrenergic mechanisms in neurodegenerative diseases: a theory. Brain Res. Rev. 2004;45:38–78.15063099Mergler D, Huel G, Bowler R, Iregren A, Belanger S, Baldwin M, Tardif R, Smargiassi A, Martin L. Nervous system dysfunction among workers with long-term exposure to manganese. Environ. Res. 1994;64:151–180.8306949Meyer JS, Quenzer LF. Psychopharmacology: drugs, the brain, and behavior. Sunderland MA: Sinauer Associates; 2005. pp. 132–137.Pal PK, Samii A, Calne DB. Manganese neurotoxicity: a review of clinical features, imaging and pathology. Neurotoxicology. 1999;20:227–238.10385886Paxinos G, Watson C. The rat brain in stereotaxic coordinates. San Diego, CA: Academic Press Inc; 1998.Powell PR, Ewing AG. Recent advances in the application of capillary electrophoresis to neuroscience. Anal. Bioanal. Chem. 2005;382:581–591.15726336Pyatskowit JW, Prohaska JR. Rodent brain and heart catecholamine levels are altered by different models of copper deficiency. Comp. Biochem. Physiol. Part C. 2007;145:275–281.PMC190334717287146Rommelfanger KS, Weinshenker D. Norepinephrine: the redheaded stepchild of Parkinson’s disease. Biochem. Pharmacol. 2007;74:177–190.17416354Roth JA, Garrick MD. Iron interactions and other biological reactions mediating the physiological and toxic actions of manganese. Biochem. Physiol. 2003;66:1–13.12818360Roth JA, Feng L, Walowitz J, Browne RW. Manganese-induced rat pheochromocytoma (PC12) cell death is independent of caspase activation. J. Neurosci. Res. 2000;61:162–171.10878589Ruiz IG, de la Torre P, Diaz T, Esteban E, Morillas JD, Muñoz-Yagüe T, Solís-Herruzo JA. Sp family of transcription factors is involved in iron-induced collagen alpha (I) gene expression. DNA Cell Biol. 2000;19:167–178.10749169Seth PK, Chandra SV. Neurotransmitters and neurotransmitter receptors in developing and adult rats during manganese poisoning. NeuroToxicology. 1984;5:67–76.6144084Shukla GS, Chandra SV, Seth PK. Effect of manganese on the levels of DNA, RNA, DNAse and RNAse in cerebrum, cerebellum and rest of the brain regions of rat. Acta Pharmacol. Toxicol. (Copenhagen) 1976;39:562–569.990038Sloot WN, van der Sluijs-Gelling AJ, Gramsbergen JBP. Selective lesions by manganese and extensive damage by iron after injection into rat striatum or hippocampus. J. Neurochem. 1994;62:205–216.7505311Struve MF, McManus BE, Wong BA, Dorman DC. Basal ganglia neurotransmitter concentrations in rhesus monkeys following subchronic manganese sulfate inhalation. Amer. J. Indust. Med. 2007;50:772–778.17620281Troadec JD, Marien M, Darios F, Hartmann A, Ruberg M, Colpaert F, Michel PP. Noradrenalin provides long-term protection of dopaminergic neurons by reducing oxidative stress. J. Neurochem. 2001;79:200–210.11595772Vidal L, Alfonso M, Campos F, Faro LRF, Cervantes RC, Durán R. Effects of manganese on extracellular levels of dopamine in rat striatum: an analysis in vivo by brain microdialysis. Neurochem. Res. 2005;30:1147–1154.16292508Wasserman GA, Liu X, Parvez F, Ahsan H, Levy D, Factor-Litvak P, Kline J, van Geen A, Slavkovich V, Lolacono NJ, Cheng Z, Zheng Y, Graziano JH. Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environ. Health Persp. 2006;114:124–129.PMC133266716393669Whittaker VP. Thirty years of synaptosome research. J. Neurocytol. 1993;22:735–742.7903689WHO/UNICEF/UNU. A guide for programme managers. Geneva: World Health Organization; 2006. Iron deficiency anaemia: assessment, prevention and control.Yamamoto K, Hornykiewicz O. Proposal for a noradrenaline hypothesis of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2004;28:913–922.15363614Zahniser NR, Doolen S. Chronic and acute regulation of Na+/Cl− -dependent neurotransmitter transporters: drugs, substrates, presynaptic receptors, and signaling systems. Pharmacol. Therap. 2001;92:21–55.11750035Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M, Gallorini M, Giaveri G, Arosio P, Santambrogio P, Fariello RG, Karatekin E, Kleinman MH, Turro N, Hornykiewicz O, Zucca FA. The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. PNAS. 2004;101:9843–9848.PMC47076215210960