Background: Immunity to food antigens (gliadin, cow's milk proteins) is in the centre of the attention of modern medicine focused on the prevention of diseases, prevention which is based on the use of appropriate restriction diet. Detection of the enhanced levels of the immune reactions to antigen(s) present in food is from this point of view of great importance because there are reports that some of health disturbances, like celiac disease (CD) and some premalignant conditions, like monoclonal gammopathy of undetermined significance (MGUS), were vanished after the appropriate restriction diets. It is well known that gliadin is toxic to small bowel mucosa of relatively small population of genetically predisposed individuals, who under this toxic action develop celiac disease (CD). As the quantity of immunogenic gliadin could vary between different wheat species, the first aim of this work was to determine the percentage of immunogenic gliadin in ten bread wheat cultivars and in three commercially grown durum wheat cultivars. The second part of the study was initiated by results of previous publication, reporting that sera of some of multiple myeloma (MM) patients showed the presence of elevated levels of anti-gliadin IgA, without the enhanced levels of anti-gliadin IgG antibodies, determined with commercial ELISA test. It was designed to assess is it possible to reveal is there any hidden, especially anti-gliadin IgG immunoreactivity, in serum of mentioned group of patients. For this purpose we tested MM patients sera, as well as celiac disease (CD) patients sera for the immunoreaction with the native gliadin isolated from wheat species used for bread and pasta making in corresponding geographic region.
Results: Gliadin was isolated from wheat flour by two step 60% ehanolic extraction. Its content was determined by commercial R5 Mendez Elisa using PWG gliadin as the standard. Results obtained showed that immunogenic gliadin content varies between 50.4 and 65.4 mg/g in bread wheat cultivars and between 20 and 25.6 mg/g in durum wheat cultivars. Anti-gliadin IgA and IgG immunoreactivity of patients' sera in (IU/ml) was firstly determined by commercial diagnostic Binding Site ELISA test, and then additionally by non-commercial ELISA tests, using standardized ethanol wheat extracts -gliadin as the antigen. In both patients groups IgA immunoreactivity to gliadin from different cultivars was almost homogenous and in correlation with results from commercial test (except for one patient with IgA(lambda) myeloma, they were more then five times higher). But, results for IgG immunoreactivity were more frequently inhomogeneous, and especially for few MM patients, they were more then five times higher and did not correlate with results obtained using Binding Site test.
Conclusion: Results obtained showed different content of immunogenic gliadin epitopes in various species of wheat. They also point for new effort to elucidate is there a need to develop new standard antigen, the representative mixture of gliadin isolated from local wheat species used for bread production in corresponding geographic region for ELISA diagnostic tests.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2696423 | PMC |
http://dx.doi.org/10.1186/1471-2172-10-32 | DOI Listing |
Plant Mol Biol
January 2025
Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.
Nitrogen (N) is a major plant nutrient and its deficiency can arrest plant growth. However, how low-N stress impair plant growth and its related tolerance mechanisms in peanut seedlings has not yet been explored. To counteract this issue, a hydroponic study was conducted to explore low N stress (0.
View Article and Find Full Text PDFSci Data
January 2025
Section of Intensive Plant Food Systems, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany.
Multi-environmental trials (MET) with temporal and spatial variance are crucial for understanding genotype-environment-management (GxExM) interactions in crops. Here, we present a MET dataset for winter wheat in Germany. The dataset encompasses MET spanning six years (2015-2020), six locations and nine crop management scenarios (consisting of combinations for three treatments, unbalanced in each location and year) comparing 228 cultivars released between 1963 and 2016, amounting to a total of 526,751 data points covering 24 traits.
View Article and Find Full Text PDFProtoplasma
January 2025
Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India.
Stay-green (SG) and stem reserve mobilization (SRM) are two significant mutually exclusive traits, which contributes to grain-filling during drought and heat stress in wheat. The current research was conducted in a genome-wide association study (GWAS) panel consisting of 278 wheat genotypes of advanced breeding lines to find the markers linked with SG and SRM traits and also to screen the superior genotypes. SG and SRM traits, viz.
View Article and Find Full Text PDFPest Manag Sci
January 2025
College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, China.
Background: Fomesafen is a selective herbicide widely used to control post-emergent broad-leaf weeds in soybean and peanut fields. Because of its persistent nature in soil, it can suppress subsequent crops, including wheat. There is limited information focusing on methods of protecting wheat from fomesafen injury by soil residue.
View Article and Find Full Text PDFBMC Genom Data
January 2025
Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang, 050000, China.
Background: Wheat seeds display different colors due to the types and contents of anthocyanins, which is closely related to anthocyanin metabolism. In this study, a transcriptomic and metabolomic analysis between white and purple color wheat pericarp aimed to explore some key genes and metabolites involved in anthocyanin metabolism.
Results: Two wheat cultivars, a white seed cultivar Shiluan02-1 and purple seed cultivar Hengzi151 were used to identify the variations in differentially expressed genes (DEGs) and differentially accumulated flavonoids (DAFs).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!