Many kinds of primer design (PD) software tools have been developed, but most of them lack a single nucleotide polymorphism (SNP) genotyping service. Here, we introduce the web-based freeware "Prim-SNPing," which, in addition to general PD, provides three kinds of primer design functions for cost-effective SNP genotyping: natural PD, mutagenic PD, and confronting two-pair primers (CTPP) PD. The natural PD and mutagenic PD provide primers and restriction enzyme mining for polymerase chain reaction-restriction fragment of length polymorphism (PCR-RFLP), while CTPP PD provides primers for restriction enzyme-free SNP genotyping. The PCR specificity and efficiency of the designed primers are improved by BLAST searching and evaluating secondary structure (such as GC clamps, dimers, and hairpins), respectively. The length pattern of PCR-RFLP using natural PD is user-adjustable, and the restriction sites of the RFLP enzymes provided by Prim-SNPing are confirmed to be absent within the generated PCR product. In CTPP PD, the need for a separate digestion step in RFLP is eliminated, thus making it faster and cheaper. The output of Prim-SNPing includes the primer list, melting temperature (Tm) value, GC percentage, and amplicon size with enzyme digestion information. The reference SNP (refSNP, or rs) clusters from the Single Nucleotide Polymorphism database (dbSNP) at the National Center for Biotechnology Information (NCBI), and multiple other formats of human, mouse, and rat SNP sequences are acceptable input. In summary, Prim-SNPing provides interactive, user-friendly and cost-effective primer design for SNP genotyping. It is freely available at http://bio.kuas.edu.tw/prim-snping.

Download full-text PDF

Source
http://dx.doi.org/10.2144/000113092DOI Listing

Publication Analysis

Top Keywords

snp genotyping
20
primer design
12
cost-effective snp
8
kinds primer
8
single nucleotide
8
nucleotide polymorphism
8
natural mutagenic
8
primers restriction
8
snp
7
genotyping
5

Similar Publications

Association analysis between forkhead box E1 gene and non-syndromic cleft lip with or without cleft palate in Han Chinese population.

Hua Xi Kou Qiang Yi Xue Za Zhi

February 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.

Objectives: This study aims to explore the association between single nucleotide polymorphisms (SNPs) loci near the haplotype region hg19 chr9:100560865-100660865 of the forkhead box E1 (FOXE1) gene and the occurrence of non-syndromic cleft lip with or without cleft palate (NSCL/P) in western Han Chinese population.

Methods: In the first stage, our study recruited 159 NSCL/P patients and performed targeted region sequencing to screen SNPs loci near the haplotype region of the FOXE1 gene associated with NSCL/P. In the second stage, we selected 21 common SNPs and re-enrolled 1 000 non-syndromic cleft lip only (NSCLO) patients, 1 000 non-syndromic cleft palate only (NSCPO) patients, and 1 000 normal controls to verify the association.

View Article and Find Full Text PDF

Objective: Develop a predicting model that can help stratify patients with epithelial ovarian cancer (EOC) before platinum-based chemotherapy.

Methods: 148 patients with pathologically confirmed EOC and with a minimum 5-year follow-up were retrospectively enrolled. Patients were classified into platinum-sensitive and platinum-resistant groups according to treatment responses.

View Article and Find Full Text PDF

Background: One-carbon metabolism links folate and methionine metabolism and this is essential for nucleotide synthesis in the cells. Alterations in one-carbon metabolism are associated with cardiovascular disease (CVD), type 2 diabetes and cancer. Our aim was to investigate whether SNPs in antioxidant-enzyme genes impact the concentrations of folate in serum (s-folate), plasma total homocysteine (p-tHcy) and total glutathione in plasma (p-tGSH) in healthy subjects after supplementation with folic acid.

View Article and Find Full Text PDF

Congenital heart disease (CHD) is a prevalent condition characterized by defective heart development, causing premature death and stillbirths among infants. Genome-wide association studies (GWASs) have provided insights into the role of genetic variants in CHD pathogenesis through the identification of a comprehensive set of single-nucleotide polymorphisms (SNPs). Notably, 90-95% of these variants reside in the noncoding genome, complicating the understanding of their underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!