Effects of AMPK activators on the sub-cellular distribution of fatty acid transporters CD36 and FABPpm.

Arch Physiol Biochem

Division of Endocrinology and Metabolism, Department of Biology and Institute of Biomembranes, Utrecht University, NL-3584 CH Utrecht, The Netherlands.

Published: July 2009

AI Article Synopsis

Article Abstract

In heart and skeletal muscle, enhanced contractile activity induces an increase in the uptake of glucose and long-chain fatty acids (LCFA) via an AMP-activated protein kinase (AMPK)-regulated mechanism. AMPK activation induces glucose uptake through translocation of glucose transporter 4 (GLUT4) from intracellular pools to the plasma membrane (PM). AMPK-mediated LCFA uptake has been suggested to be regulated by a similar translocation of the LCFA transporters CD36 and plasma membrane-associated fatty acid binding protein (FABPpm). In contrast to the well-characterized GLUT4 translocation, documentation of the proposed translocation of both LCFA transporters is rudimentary. Therefore, we adopted a cell culture system to investigate the localization of CD36 and FABPpm compared with GLUT4, in the absence and presence of AMPK activators oligomycin and AICAR. To this end, intact Chinese hamster ovary (CHO) cells stably expressing CD36 or myc-tagged GLUT4 (GLUT4myc) were used; FABPpm is endogenously expressed in CHO cells. Immuno-fluorescence microscopy revealed that CD36 PM localization resembled that of GLUT4, while FABPpm localized to other PM domains. Upon stimulation with oligomycin or AICAR, CD36 translocated (1.5-fold increase) to a PM location similar to that of GLUT4myc. In contrast, the PM FABPpm content did not change upon AMPK activation. Thus, for the first time in intact cells, we present evidence for AMPK-mediated translocation of CD36 from intracellular pools to the PM, similar to GLUT4, whereas FABPpm is not relocated.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13813450902975090DOI Listing

Publication Analysis

Top Keywords

ampk activators
8
fatty acid
8
transporters cd36
8
cd36 fabppm
8
ampk activation
8
intracellular pools
8
translocation lcfa
8
lcfa transporters
8
oligomycin aicar
8
cho cells
8

Similar Publications

PAS domain-containing serine/threonine-protein kinase (PASK) is a nutrient and energy sensor regulated by fasting/refeeding conditions in hypothalamic areas involved in controlling energy balance. In this sense, PASK plays a role in coordinating the activation/inactivation of AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) in response to fasting. PASK deficiency protects against the development of diet-induced obesity.

View Article and Find Full Text PDF

Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA) has been considered as a strategy to decrease tau and amyloid-beta phosphorylation, aggregation, and pathology in Alzheimer's disease (AD). There is still more to be learned about the impact of enhancing global protein O-GlcNAcylation, which is important for understanding the potential of using OGA inhibition to treat neurodegenerative diseases. In this study, we investigated the acute effect of pharmacologically increasing O-GlcNAc levels, using the OGA inhibitor Thiamet G (TG), in normal mouse brains.

View Article and Find Full Text PDF

Intestinal injury is an important complication of burn sepsis with limited therapeutic choices. Phellodendrine is a promising compound for gastrointestinal inflammatory diseases and is extracted from the traditional Chinese medicine phellodendron bark. The study aimed to explore the role of phellodendrine against oxidative stress and autophagy in burn sepsis-induced intestinal injury.

View Article and Find Full Text PDF

D-β-hydroxybutyrate, BHB, has been previously proposed as an anti-senescent agent in vitro and in vivo in several tissues including vascular smooth muscle. Moreover, BHB derivatives as ketone esters alleviate heart failure. Here, we provide evidence of the potential therapeutic effect of BHB on Hutchinson-Gilford progeria syndrome (HGPS), a rare condition characterized by premature aging and heart failure, caused by the presence of progerin, the aberrant protein derived from LMNA/C gene c.

View Article and Find Full Text PDF

The clinical use of dexamethasone (DXM) is associated with the development of non-alcoholic fatty liver disease (NAFLD). However, the mechanisms by which DXM-induced NAFLD is still incompletely known. Therefore, the current study aims to test the hypothesis that DXM-induced NAFLD is mediated by dysregulation of key genes involved in lipid metabolism and liraglutide (LG) can ameliorate these effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!