Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2345/0899-8205-43.3.241 | DOI Listing |
Unlabelled: The auditory brainstem response (ABR) is a widely used objective electrophysiology measure for non-invasively assessing auditory function and neural activities in the auditory brainstem, but its ability to reflect detailed neuronal processes is limited due to the averaging nature of the electroencephalogram recordings. This study addresses this limitation by developing a computational model of the auditory brainstem which is capable of synthesizing ABR traces based on a large, population scale neural extrapolation of a spiking neuronal network of auditory brainstem neural circuitry. The model was able to recapitulate alterations in ABR waveform morphology that have been shown to be present in two medical conditions: animal models of autism and aging.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2024
Department of Biomedical Engineering, Indian Institute of Technology, Ropar, India.
The health and fitness of the human body rely heavily on physiological parameters. These parameters can be measured using various tools such as ECG, EMG, EEG, EOG, among others, to obtain real-time physiological data. Analysing the bio-signals obtained from these measurements can provide valuable information that can be used to improve health-care in terms of observation, diagnosis, and treatment.
View Article and Find Full Text PDFInt J Mol Sci
November 2023
Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain.
Magnetic hyperthermia (MHT) is an oncological therapy that uses magnetic nanoparticles (MNPs) to generate localized heat under a low-frequency alternating magnetic field (AMF). Recently, trapezoidal pulsed alternating magnetic fields (TPAMFs) have proven their efficacy in enhancing the efficiency of heating in MHT as compared to the sinusoidal one. Our study aims to compare the TPAMF waveform's killing effect against the sinusoidal waveform in B16F10 and CT2A cell lines to determine more efficient waveforms in causing cell death.
View Article and Find Full Text PDFHeliyon
October 2023
Department of Electrical Electronics Engineering, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey.
In this paper, a comprehensive investigation into discretization, effective sample time selection considering delays in the system, and time and frequency domain analysis of a DC-DC buck converter, which plays a vital role in photovoltaic (PV) systems, is conducted to enhance the understanding of their dynamic behavior, optimize control algorithms, improve system efficiency, and ensure reliable power conversion in photovoltaic applications. To effectively address the non-linear behavior and enhance digital control of a buck converter by selecting the best sample time, several approaches can be employed. These include accurate modeling and identification of non-linear elements, development of advanced control algorithms that account for non-linearities, implementation of adaptive control techniques, and utilization of feedback mechanisms to compensate for deviations from linearity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!