Conclusion: Estrogen receptor (ER) alpha and beta were expressed in the inner ear, and expression decreased with increasing age. ERalpha may alter cochlear and vestibular sensory transduction, and ERbeta may have a neuroprotective function in the inner ear.

Objective: Expression of ERalpha and ERbeta in the mouse inner ear and its alterations with sex and aging were analyzed.

Materials And Methods: Male and female CBA/J mice aged 8 weeks and 24 months were used. The localization and the intensity of ERalpha and ERbeta immunoreactivity in the inner ear of young and old mice of both sexes were investigated by immunohistochemistry.

Results: ERalpha and ERbeta were co-expressed in the inner ear, i.e. in the nuclei of stria vascularis, outer and inner hair cells, spiral ganglion cells and vestibular ganglion cells, vestibular dark cells and endolymphatic sac. Strial marginal cells, outer hair cells and type II ganglion cells showed less expression of ERalpha. No gender- or age-related difference was noted in the expression pattern of ERalpha or ERbeta, but fluorescence intensity of ERalpha was stronger in young female mice than in young male mice. In contrast, ERbeta revealed no significant difference. In the old mice, fluorescence intensities of both ERalpha and ERbeta were significantly decreased in both sexes.

Download full-text PDF

Source
http://dx.doi.org/10.3109/00016480903016570DOI Listing

Publication Analysis

Top Keywords

inner ear
20
eralpha erbeta
20
ganglion cells
12
estrogen receptor
8
receptor alpha
8
alpha beta
8
mouse inner
8
eralpha
8
expression eralpha
8
intensity eralpha
8

Similar Publications

Objective: To evaluate the plasma levels of the otoconial proteins, otoconin-90 and otolin-1, in individuals diagnosed with vestibular neuritis (VN) and determine the feasibility of using these proteins as biomarkers for VN.

Methods: In this preliminary study, 30 patients diagnosed with VN and 70 healthy individuals were recruited and followed to confirm whether they had benign paroxysmal positional vertigo (BPPV) during the following time. The recorded data included measurements of height, weight, and history of diabetes mellitus or hypertension.

View Article and Find Full Text PDF

Middle ear biofilm and sudden deafness - a light and transmission electron microscopy study.

Front Neurol

December 2024

Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden.

Background: There still exists controversy about whether the healthy human middle ear mucosa is sterile or if it may harbor a diverse microbiome. Considering the delicacy of the human round window membrane (RWM), different mechanisms may exist for avoiding inner ear pathogen invasion causing sensorineural deafness. We re-analyzed archival human RWMs using light and transmission electron microscopy after decalcification to determine if bacteria are present in clinically normal human middle ears.

View Article and Find Full Text PDF

To explore the value of high resolution computed tomography(HRCT) combined with Magnetic Resonance Imaging(MRI) in the diagnosis of inner ear malformation. HRCT and MRI data of 82 patients with inner ear malformations were analyzed retrospectively. HRCT MPR and CPR reconstruction of the inner ear structure, facial nerve canal and oblique sagittal MRI reconstruction of the internal auditory canal were performed.

View Article and Find Full Text PDF

This study aimed to compare the effects of cochlear implantation(CI) on vestibular function in patients with large vestibular aqueduct syndrome(LVAS) and in patients with extremely severe deafness with normal inner ear structure. A total of 28 LVAS patients and 28 patients with normal inner ear structure who suffered from extremely severe deafness were selected. The parameters of caloric tests, bone conduction evoked cervical vestibular-evoked myogenic potentials(cVEMP), bone conduction evoked ocular vestibular-evoked myogenic potentials(oVEMP) and video head impulse tests(v-HIT) were compared between the two groups before and after CI.

View Article and Find Full Text PDF

Cochlear nerve deficiency(CND) is a rare inner ear malformation characterized by a hypoplastic or absent cochlear nerve, resulting in variable hearing loss or total deafness, depending on the quantity of nerve fibers present. About 18% of congenital hearing loss are associated with CND. It is a disease of uncertain cause.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!