The purpose of this study was to determine whether the muscle vibration applied to the quadriceps has potential for augmenting muscle activity during gait in spinal cord injured (SCI) individuals. The effects of muscle vibration on muscle activity during robotic-assisted walking were measured in 11 subjects with spinal cord injury (SCI) that could tolerate weight-supported walking, along with five neurologically intact individuals. Electromyographic (EMG) recordings were made from the tibialis anterior (TA), medial gastrocnemius (MG), rectus femoris (RF), vastus lateralis (VL), and medial hamstrings (MH) during gait. Vibration was applied to the anterior mid-thigh using a custom vibrator oscillating at 80 Hz. Five vibratory conditions were tested per session including vibration applied during: (1) swing phase, (2) stance phase, (3) stance-swing transitions, (4) swing-stance transitions, and (5) throughout the entire gait cycle. During all vibration conditions, a significant increase in EMG activity was observed across both SCI and control groups in the RF, VL, and MH of the ipsilateral leg. In the SCI subjects, the VL demonstrated a shift toward more appropriate muscle timing when vibration was applied during stance phase and transition to stance of the gait cycle. These observations suggest that the sensory feedback from quadriceps vibration caused increased muscle excitation that resulted in phase-dependent changes in the timing of muscle activation during gait.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-009-1855-9DOI Listing

Publication Analysis

Top Keywords

vibration applied
16
muscle activity
12
spinal cord
12
vibration
8
cord injury
8
muscle vibration
8
stance phase
8
gait cycle
8
muscle
7
gait
5

Similar Publications

Ground-Target Recognition Method Based on Transfer Learning.

Sensors (Basel)

January 2025

College of Communication Engineering, Jilin University, Changchun 130012, China.

A moving ground-target recognition system can monitor suspicious activities of pedestrians and vehicles in key areas. Currently, most target recognition systems are based on devices such as fiber optics, radar, and vibration sensors. A system based on vibration sensors has the advantages of small size, low power consumption, strong concealment, easy installation, and low power consumption.

View Article and Find Full Text PDF

One of the challenging problems in the research and development of vibration sensors relates to the formation of Ohmic contacts for the removal of an electrical signal. In some cases, it is proposed to use arrays of carbon nanotubes (CNTs), which can serve as highly elastic electrode materials for vibration sensors. The purpose of this work is to study the effect of a current-collecting layer of CNTs grown over silicon on the properties of a lead zirconate titanate (PZT) film, which is frequently employed in mechanical vibration sensors or energy harvesters.

View Article and Find Full Text PDF

For those piezoelectric materials that operate under high-power conditions, the piezoelectric and dielectric properties obtained under small signal conditions cannot be directly applied to high-power transducers. There are three mainstream high-power characterization methods: the constant voltage method, the constant current method, and the transient method. In this study, we developed and verified a combined impedance method that integrated the advantages of the constant voltage and current methods, along with an improved transient method, for high-power testing of PZT-5H piezoelectric ceramics.

View Article and Find Full Text PDF

Piezoresistive Cantilever Microprobe with Integrated Actuator for Contact Resonance Imaging.

Sensors (Basel)

January 2025

Institute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany.

A novel piezoresistive cantilever microprobe (PCM) with an integrated electrothermal or piezoelectric actuator has been designed to replace current commercial PCMs, which require external actuators to perform contact-resonance imaging (CRI) of workpieces and avoid unwanted "forest of peaks" observed at large travel speed in the millimeter-per-second range. Initially, a PCM with integrated resistors for electrothermal actuation (ETA) was designed, built, and tested. Here, the ETA can be performed with a piezoresistive Wheatstone bridge, which converts mechanical strain into electrical signals by boron diffusion in order to simplify the production process.

View Article and Find Full Text PDF

This study proposes a novel rolling bearing fault diagnosis technique based on a synchrosqueezing wavelet transform (SWT) and a transfer residual convolutional neural network (TRCNN) designed to address the difficulties of feature extraction caused by the non-stationarity of fault signals, as well as the issue of low fault diagnosis accuracy resulting from small sample quantities. This approach transforms the one-dimensional vibration signal into time-frequency diagrams using an SWT based on complex Morlet wavelet basis functions, which redistributes (squeezes) the values of the wavelet coefficients at different localized points in a time-frequency plane to the estimated instantaneous frequencies. This allows the energy to be more fully concentrated in actual corresponding frequency components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!