Crystallization and X-ray diffraction data collection of topoisomerase IV ParE subunit from Xanthomonas oryzae pv. oryzae.

Acta Crystallogr Sect F Struct Biol Cryst Commun

Department of Chemistry, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea.

Published: June 2009

Topoisomerase IV is involved in topological changes in the bacterial genome using the free energy from ATP hydrolysis. Its functions are the decatenation of daughter chromosomes following replication by DNA relaxation and double-strand DNA breakage. In this study, the N-terminal fragment of the topoisomerase IV ParE subunit from Xanthomonas oryzae pv. oryzae was overexpressed in Escherichia coli, purified and crystallized. Diffraction data were collected to 2.15 A resolution using a synchrotron-radiation source. The crystal belonged to space group P4(2)2(1)2, with unit-cell parameters a = b = 105.30, c = 133.76 A. The asymmetric unit contains one molecule, with a corresponding V(M) of 4.21 A(3) Da(-1) and a solvent content of 69.6%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688423PMC
http://dx.doi.org/10.1107/S1744309109016649DOI Listing

Publication Analysis

Top Keywords

diffraction data
8
topoisomerase pare
8
pare subunit
8
subunit xanthomonas
8
xanthomonas oryzae
8
oryzae oryzae
8
crystallization x-ray
4
x-ray diffraction
4
data collection
4
collection topoisomerase
4

Similar Publications

The vertebrate visual cycle hinges on enzymatically converting all--retinol (at-ROL) into 11--retinal (11c-RAL), the chromophore that binds to opsins in photoreceptors, forming light-responsive pigments. When struck by a photon, these pigments activate the phototransduction pathway and initiate the process of vision. The enzymatic isomerization of at-ROL, crucial for restoring the visual pigments and preparing them to receive new light stimuli, relies on various enzymes found in both the photoreceptors and retinal pigment epithelium cells.

View Article and Find Full Text PDF

Pressure-induced phase transitions in a new luminescent gold(I)-arylacetylide.

Dalton Trans

January 2025

Chemistry Department, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland.

Stimulus-responsive molecular materials are highly desirable because of the wide range of their potential applications. In particular, switching of physical properties opens application pathways for molecular materials as sensors or actuators. Property switching in solids can be achieved by inducing single-crystal-to-single-crystal (SCSC) phase transitions.

View Article and Find Full Text PDF

A new oleanane-type triterpenoid, 3β-acetyl-15α-hydroxy-oleanane-13β,28-olide (1), and a new clerodane furanoditerpenoid, cnidophyllin A (2), together with eleven known compounds (3-13) were isolated and identified from the 95% EtOH extract of the leaves and twigs of Croton cnidophyllus. Except for compounds 3 and 7, all other compounds were isolated for the first time from C. cnidophyllus.

View Article and Find Full Text PDF

Investigations using hot compression tests on a new high-strength weathering steel revealed specific deformation behaviors across different conditions. These tests were performed at temperatures ranging from 850 to 1050 °C and at strain rates from 0.01 to 5 s.

View Article and Find Full Text PDF

Machine learning recognition of hybrid lead halide perovskites and perovskite-related structures from X-ray diffraction patterns.

Nanoscale

January 2025

Laboratory of New Materials for Solar Energetics, Department of Materials Science, Lomonosov Moscow State University, 1 Lenin Hills, 119991, Moscow, Russia.

Identification of crystal structures is a crucial stage in the exploration of novel functional materials. This procedure is usually time-consuming and can be false-positive or false-negative. This necessitates a significant level of expert proficiency in the field of crystallography and, especially, requires deep experience in perovskite-related structures of hybrid perovskites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!