A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Distinct, time-dependent effects of voluntary exercise on circadian and ultradian rhythms and stress responses of free corticosterone in the rat hippocampus. | LitMetric

Distinct, time-dependent effects of voluntary exercise on circadian and ultradian rhythms and stress responses of free corticosterone in the rat hippocampus.

Endocrinology

Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Clinical Science South Bristol, University of Bristol, Bristol BS1 3NY, United Kingdom.

Published: September 2009

Previous work has shown that allowing rats to voluntarily exercise in a running wheel for 4 wk modifies the hypothalamic-pituitary-adrenal axis and behavioral coping responses to stress. To investigate whether long-term voluntary exercise would also affect the free, biologically active fraction of corticosterone in the brain, we conducted an in vivo microdialysis study in the hippocampus of rats. We monitored both the baseline circadian and ultradian patterns of corticosterone in hippocampus dialysates over the diurnal cycle and the responses to forced swim and novelty stress at different stages of exercise. Exercise for 1 d, 2 d, or 1 wk did not affect baseline circadian and ultradian pulse parameters or stress-induced hippocampal free corticosterone concentrations suggesting that acute or short-term periods of exercise do not affect baseline and stress-induced hormone levels. Baseline hormone parameters in 4 wk exercised rats, however, showed significantly increased pulse amplitudes (+108%) and mean free corticosterone levels (+42%) between 1500 and 2100 h but not between 0900 and 1500 h. Surprisingly, although our previous work showed substantial changes in stress-evoked plasma (total) corticosterone responses in long-term exercised animals, no differences in stress-induced hippocampal free hormone responses could be observed between exercised and sedentary animals. This lack of differences was not caused by compensatory changes in plasma corticosteroid-binding-globulin binding levels in exercising rats. Thus, long-term exercising rats show anticipatory increases in glucocorticoid output before the start of the active phase. These rats also reveal the putative existence of a containment mechanism preventing overexposure of the brain to glucocorticoid hormones.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871297PMC
http://dx.doi.org/10.1210/en.2009-0402DOI Listing

Publication Analysis

Top Keywords

circadian ultradian
12
free corticosterone
12
exercise affect
12
voluntary exercise
8
previous work
8
baseline circadian
8
affect baseline
8
stress-induced hippocampal
8
hippocampal free
8
exercising rats
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!