Adenosine A(2A)R and TLR agonists synergize to induce an "angiogenic switch" in macrophages, down-regulating TNF-alpha and up-regulating VEGF expression. This switch involves transcriptional regulation of VEGF by HIF-1, transcriptional induction of HIF-1alpha by LPS (TLR4 agonist), and A(2A)R-dependent post-transcriptional regulation of HIF-1alpha stability. Murine HIF-1alpha is expressed as two mRNA isoforms: HIF-1alphaI.1 and -I.2, which contain alternative first exons and promoters. HIF-1alphaI.2 is expressed ubiquitously, and HIF-1alphaI.1 is tissue-specific. We investigated the regulation of these isoforms in macrophages by TLR4 and A(2A)R agonists. HIF-1alphaI.1 is induced strongly compared with HIF-1alphaI.2 upon costimulation with LPS and A(2A)R agonists (NECA or CGS21680). In unstimulated cells, the I.1 isoform constituted approximately 4% of HIF-1alpha transcripts; in LPS and NECA- or CGS21680-treated macrophages, this level was approximately 15%, indicating a substantial contribution of HIF-1alphaI.1 to total HIF-1alpha expression. The promoters of both isoforms were induced by LPS but not enhanced further by NECA, suggesting A(2A)R-mediated post-transcriptional regulation. LPS/NECA-induced expression of HIF-1alphaI.1 was down-regulated by Bay 11-7085 (NF-kappaB inhibitor) and ZM241385 (A(2A)R antagonist). Although VEGF and IL-10 expression by HIF-1alphaI.1-/- macrophages was equivalent to that of wild-type macrophages, TNF-alpha, MIP-1alpha, IL-6, IL-12p40, and IL-1beta expression was significantly greater, suggesting a role for HIF-1alphaI.1 in modulating expression of these cytokines. A(2A)R expression in unstimulated macrophages was low but was induced rapidly by LPS in a NF-kappaB-dependent manner. LPS-induced expression of A(2A)Rs and HIF-1alpha and A(2A)R-dependent HIF-1alpha mRNA and protein stabilization provide mechanisms for the synergistic effects of LPS and A(2A)R agonists on macrophage VEGF expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796622 | PMC |
http://dx.doi.org/10.1189/jlb.0109021 | DOI Listing |
Biophys J
December 2024
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213 United States of America. Electronic address:
G-Protein coupled receptors (GPCRs) represent one of the largest classes of therapeutic targets. However, developing successful therapeutics to target GPCRs is a challenging endeavor with many molecules failing during in vivo clinical trials due to a lack of efficacy. The in vitro identification of drug targeted residence time (1/k) has been suggested to improve prediction of in vivo success.
View Article and Find Full Text PDFACS Chem Biol
December 2024
Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
The use of photoresponsive ligands to optically control proteins of interest, known as photopharmacology, is a powerful technique for elucidating cellular function in living cells and animals with a high spatiotemporal resolution. The adenosine A receptor (AR) is a G protein-coupled receptor that is expressed in various tissues; its dysregulation is implicated in severe diseases such as insomnia and Parkinson's disease. A detailed elucidation of the physiological function of AR is, therefore, highly desirable.
View Article and Find Full Text PDFNeuropharmacology
January 2025
Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy.
The endogenous neuromodulator adenosine is massively released during hypoxic/ischemic insults and differentially modulates post-ischemic damage depending on the expression and recruitment of its four metabotropic receptor subtypes, namely A, A, A and A receptors (ARs, ARs, ARs and ARs). We previously demonstrated, by using a model of transient middle cerebral artery occlusion (tMCAo) in rats, that selective activation of ARs, as well as ARs, ameliorates post-ischemic brain damage in contrast to neuroinflammation. In the present study, we investigated whether the multitarget nucleoside MRS3997, a full agonist at both ARs and ARs, would afford higher neuroprotection in post-ischemic damage.
View Article and Find Full Text PDFChem Biol Interact
November 2024
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt. Electronic address:
Acute kidney injury (AKI), with a high mortality and morbidity, is known as a risk factor for developing progressive chronic kidney disease (CKD). Targeting transition of AKI to CKD displays an excellent therapeutic potential. This study aims at investigating the role of CGS-21680, selective A2AR agonist, in deferring Cis-induced AKI-CKD transition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!