Use of tracers to quantify subsurface flow through a mining pit.

Ecol Appl

Department of Civil and Environmental Engineering, University of California, Davis, California 95616, USA.

Published: December 2008

AI Article Synopsis

Article Abstract

Three independent tracer experiments were conducted to quantify the through-flow of water from Herman Pit, an abandoned mercury (Hg) mine pit adjacent to Clear Lake, California, USA. The tracers used were Rhodamine-WT, sulfur hexafluoride, and a mixture of sulfur hexafluoride and neon-22. The tracers were injected into Herman Pit, a generally well-mixed water body of approximately 81,000 m2, and the concentrations were monitored in the mine pit, observation wells, and the lake for 2-3 months following each injection. The results for all three experiments showed that the tracer arrived at certain observation wells within days of injection. Comparing all the well data showed a highly heterogeneous response, with a small number of wells showing this near-instantaneous response and others taking months before the tracer was detectable. Tracer was also found in the lake on four occasions over a one-month period, too few to infer any pattern but sufficient to confirm the connection of the two water bodies. Using a simple mass balance model it was possible to determine the effective loss rate through advection for each of the tracers and with this to estimate the through-flow rate. The through-flow rate for all three experiments was approximately 630 L/s, at least 1-2 orders of magnitude larger than previous estimates, all of which had been based on geochemical inferences or other indirect measures of the pit through-flow.

Download full-text PDF

Source
http://dx.doi.org/10.1890/06-0998.1DOI Listing

Publication Analysis

Top Keywords

herman pit
8
mine pit
8
sulfur hexafluoride
8
observation wells
8
three experiments
8
through-flow rate
8
pit
6
tracers
4
tracers quantify
4
quantify subsurface
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!