A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Discovery of selective luteinizing hormone receptor agonists using the bivalent ligand method. | LitMetric

Discovery of selective luteinizing hormone receptor agonists using the bivalent ligand method.

ChemMedChem

Leiden Institute of Chemistry, Department of Bio-Organic Synthesis, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands.

Published: July 2009

Two series of dimeric ligands for a G-protein-coupled receptor were prepared that differ by the interconnecting spacer system. Biological evaluation revealed that both dimeric series exhibit unique biological properties relative to their monomeric counterparts.The luteinizing hormone receptor (LHR), the follicle-stimulating hormone receptor (FSHR), and the thyroid-stimulating hormone receptor (TSHR) belong to the glycoprotein hormone receptor (GpHR) family. A prominent feature of all endogenous glycoprotein ligands is that they share an identical alpha subunit and acquire their selectivity from the unique beta subunit. Recent developments in pro-fertility research have led to the discovery of several low-molecular-weight agonists for the luteinizing hormone/choriogonadotropin receptor that bind to the transmembrane (TM) region of the LHR. Interestingly, some of these agonists are also able to activate the FSHR. Several research groups have shown that ligand dimerization presents a powerful tool to increase the subtype selectivity for structurally related G-protein-coupled receptors. In this work, we applied the dimerization strategy to GpHRs and explored the effect on receptors with closely related TM regions. Two series of dimeric ligands were prepared that differ in the interconnecting spacer system. Biological evaluation revealed that both series exhibit unique selectivity properties for the LHR, originating from either decreased potency or a decreased efficacy toward the FSHR.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.200900058DOI Listing

Publication Analysis

Top Keywords

hormone receptor
20
luteinizing hormone
8
series dimeric
8
dimeric ligands
8
prepared differ
8
differ interconnecting
8
interconnecting spacer
8
spacer system
8
system biological
8
biological evaluation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!