Neurotrophins are substances that have been shown to be important in growth and remodelling phases in different types of tissue. There is no information concerning the possible occurrences of neurotrophins and their receptors in tendons. In this study, sections of both chronic painful (tendinosis) and pain-free (non-tendinosis) human Achilles tendons were immunohistochemically stained with antibodies against the neurotrophins NGF and BDNF, and their receptors TrkA, TrkB and p75. There were marked immunoreactions for NGF and BDNF in the tendon cells (tenocytes) of both tendinosis and non-tendinosis specimens. The tenocytes were also reactive for the receptor p75, but not for the receptors TrkA and TrkB. In addition, p75 immunoreactions were seen in nerve fascicles and in the walls of arterioles. This is the first study to identify neurotrophins in the tenocytes of human tendon. It is clear from this study that the local cells of tendons are sources of neurotrophins. The neurotrophins may play an important role in the tendon through their interaction with the receptor p75 in the tenocytes. These interactions may regulate tropic modulatory, and apoptotic effects. In conclusion, the observations show a new concept concerning production and function of neurotrophins, namely in the tenocytes of tendons.

Download full-text PDF

Source
http://dx.doi.org/10.14670/HH-24.839DOI Listing

Publication Analysis

Top Keywords

ngf bdnf
12
receptor p75
12
neurotrophins
8
neurotrophins ngf
8
tendon cells
8
human achilles
8
receptors trka
8
trka trkb
8
neurotrophins tenocytes
8
p75
5

Similar Publications

VEGF is not only the most potent angiogenic factor, but also an important neurotrophic factor. In this study, vitreous expression of six neurotrophic factors were examined in proliferative diabetic retinopathy (PDR) patients with prior anti-VEGF therapy (n = 48) or without anti-VEGF treatment (n = 41) via ELISA. Potential source, variation and impact of these factors were further investigated in a mouse model of oxygen-induced retinopathy (OIR), as well as primary Müller cells and 661W photoreceptor cell line under hypoxic condition.

View Article and Find Full Text PDF

Tumor necrosis factor alpha (TNF-α) is a well-known pro-inflammatory cytokine originally recognized for its ability to induce apoptosis and cell death. However, recent research has revealed that TNF-α also plays a crucial role as a mediator of cell survival, influencing a wide range of cellular functions. The signaling of TNF-α is mediated through two distinct receptors, TNFR1 and TNFR2, which trigger various intracellular pathways, including NF-κB, JNK, and caspase signaling cascades.

View Article and Find Full Text PDF

Liangxue Tongyu Prescription exerts neuroprotection by regulating the microbiota-gut-brain axis of rats with acute intracerebral hemorrhage.

Brain Res Bull

December 2024

School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China. Electronic address:

Liangxue Tongyu Prescription (LTP) is a classic herbal formula for treating acute intracerebral hemorrhage (AICH) in China. Previous studies have shown that LTP significantly ameliorates neurological impairments and gastrointestinal dysfunction in patients with AICH. However, the underlying molecular mechanism remains unclear.

View Article and Find Full Text PDF

To develop a scaffold suitable for simultaneous repair of both spinal cord injury (SCI) and sciatic nerve injury (SNI), we designed a multilayer composite membrane capable of unidirectional and sustained release of two factors: nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). The membrane's morphology, mechanical properties, cytocompatibility, drug release kinetics, swelling, and degradation behavior were thoroughly characterized. Additionally, its ability to promote the differentiation of PC-12 cells was assessed.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates how Anmeidan affects hippocampal neurons in sleep-deprived rats.
  • Sixty SD rats were divided into four groups: blank, model, Anmeidan, and melatonin, with Anmeidan being given at 18.18 g·kg~(-1)·d~(-1) for four weeks.
  • Results indicate that sleep deprivation significantly impairs rat behavior, reduces hippocampal neuron health, and alters key protein expressions involved in synaptic function compared to the blank group.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!