A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spectroscopic signatures of single, isolated cancer cell nuclei using synchrotron infrared microscopy. | LitMetric

Single-cell studies have important implications in biomedicine. An accurate investigation of biochemical behaviour and status requires a biomolecular probe such as vibrational microscopy. Amongst other approaches, synchrotron infrared microspectroscopy is an appropriate analytical tool for single-cell investigation. However, it is important to understand the precise origin of spectral differences as they are directly related to the cell biochemistry. Beside biomolecular changes, physical properties can interfere in the resulting information, and the two effects need separating. Both cells and nuclei induce Mie scattering effects due to their equivalent size with the probe wavelength. This results in a large modification of the spectra, and its precise contribution has to be determined in order to extract the true spectral information. On this basis, we carried out this study in order to evaluate the exact contribution of cell nuclei to Mie scattering. To this purpose, we isolated whole cancer cell nuclei and obtained, for the first time, their FTIR spectra with good signal to noise ratio. The synchrotron-based FTIR (S-FTIR) spectra of nuclei showed changes in lipids, proteins, and DNA absorptions when compared to spectra of whole lung cancer cells. Importantly, we estimated the Mie scattering properties of single cells and single nuclei spectra and were consequently able to separate optical and chemical properties of single cells and nuclei. This is the first study which sheds new light on the identification of the precise spectral biomarkers of a whole cell and those of the cell nucleus.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b821112dDOI Listing

Publication Analysis

Top Keywords

cell nuclei
12
mie scattering
12
isolated cancer
8
cancer cell
8
synchrotron infrared
8
cells nuclei
8
properties single
8
single cells
8
nuclei
7
cell
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!