We demonstrate two alternative techniques for controlling and stabilizing domain walls (DW) in phase-sensitive, nonlinear optical resonators. The first of them uses input pumps with spatially modulated phase and can be applied also to dark-ring cavity solitons. An optical memory based on the latter is demonstrated. Here the physical mechanism of control relies on the advection caused to any feature by the phase gradients. The second technique uses a plane wave input pump with holes of null intensity across its transverse plane, which are able to capture DWs. Here the physical mechanism of control is of topological nature. When distributed as a regular array, these holes delimit spatial optical bits which constitute an optical memory. These techniques are illustrated in a degenerate optical parametric oscillator model, but can be applied to any phase-sensitive nonlinear optical cavity.

Download full-text PDF

Source
http://dx.doi.org/10.1364/opex.12.002130DOI Listing

Publication Analysis

Top Keywords

domain walls
8
dark-ring cavity
8
cavity solitons
8
phase-sensitive nonlinear
8
nonlinear optical
8
optical memory
8
physical mechanism
8
mechanism control
8
optical
6
stabilizing controlling
4

Similar Publications

Spiking neural networks seek to emulate biological computation through interconnected artificial neuron and synapse devices. Spintronic neurons can leverage magnetization physics to mimic biological neuron functions, such as integration tied to magnetic domain wall (DW) propagation in a patterned nanotrack and firing tied to the resistance change of a magnetic tunnel junction (MTJ), captured in the domain wall-magnetic tunnel junction (DW-MTJ) device. Leaking, relaxation of a neuron when it is not under stimulation, is also predicted to be implemented based on DW drift as a DW relaxes to a low energy position, but it has not been well explored or demonstrated in device prototypes.

View Article and Find Full Text PDF

Manipulation of Surface Spin Configurations for Enhanced Performance in Oxygen Evolution Reactions.

Nano Lett

January 2025

Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, College of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.

studies of the relationship between surface spin configurations and spin-related electrocatalytic reactions are crucial for understanding how magnetic catalysts enhance oxygen evolution reaction (OER) performance under magnetic fields. In this work, 2D FeSe nanosheets with rich surface spin configurations are synthesized via chemical vapor deposition. magnetic force microscopy and Raman spectroscopy reveal that a 200 mT magnetic field eliminates spin-disordered domain walls, forming a spin-ordered single-domain structure, which lowers the OER energy barrier, as confirmed by theoretical calculations.

View Article and Find Full Text PDF

α-Amylases, constituting a significant share of the enzyme market, are mainly synthesized by the genus Bacillus. Enzymes tailored for specific industrial applications are needed to meet the growing demand across a range of industries, and thus finding new amylases and optimizing the ones that already exist are extremely important. This study reports the successful expression, characterization and immobilization of P.

View Article and Find Full Text PDF

In silico methods are increasingly important in predicting the ecotoxicity of engineered nanomaterials (ENMs), encompassing both individual and mixture toxicity predictions. It is widely recognized that ENMs trigger oxidative stress effects by generating intracellular reactive oxygen species (ROS), serving as a key mechanism in their cytotoxicity studies. However, existing in silico methods still face significant challenges in predicting the oxidative stress effects induced by ENMs.

View Article and Find Full Text PDF

In semiconductor inspection equipment, a chuck used to hold a wafer is equipped with a cooling or heating system for temperature uniformity across the surface of the wafer. Surface temperature uniformity is important for increasing semiconductor inspection speed. Triply periodic minimal surfaces (TPMSs) are proposed to enhance temperature uniformity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!