A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The full-length calcium-sensing receptor dampens the calcemic response to 1alpha,25(OH)2 vitamin D3 in vivo independently of parathyroid hormone. | LitMetric

1Alpha,25(OH)(2) vitamin D(3) [1,25(OH)(2)D(3)] increases serum Ca(2+) concentration in vivo, an action counteracted by activation of the Ca(2+)-sensing receptor (CaSR), which decreases parathyroid hormone (PTH) secretion and increases renal Ca(2+) excretion. Relatively little is known of the role the CaSR plays in this response through its potentially direct actions in kidney, gut, and bone independently of PTH. We report PTH-independent roles of the CaSR in modulating the response to exogenous 1,25(OH)(2)D(3) in mice with targeted disruption of both the CaSR and PTH genes (C(-)P(-)) compared with that in mice with disruption of the PTH gene alone (C(+)P(-)) or wild-type mice (C(+)P(+)). After intraperitoneal injection of 0.5 ng/g body wt 1,25(OH)(2)D(3), peak calcemic responses were observed at 24 h in all three genotypes in association with 1) a greater increase in serum Ca(2+) in C(-)P(-) mice than in the other genotypes on a Ca(2+)-replete diet that was attenuated by a Ca(2+)-deficient diet and pamidronate, 2) increased urinary Ca(2+)-to-creatinine ratios (UCa/Cr) in the C(+)P(-) and C(+)P(+) mice but a lowered ratio in the C(-)P(-) mice on a Ca(2+)-replete diet, and 3) no increase in calcitonin (CT) secretion in the C(+)P(+) and C(+)P(-) mice and a small increase in the C(-)P(-) mice. PTH deficiency had the anticipated effects on the expression of key genes involved in Ca(2+) transport at baseline in the duodenum and kidney, and injection of 1,25(OH)(2)D(3) increased gene expression 8 h later. However, the changes in the genes evaluated did not fully explain the differences in serum Ca(2+) seen among the genotypes. In conclusion, mice lacking the full-length CaSR have increased sensitivity to the calcemic action of 1,25(OH)(2)D(3) in the setting of PTH deficiency. This is principally from enhanced 1,25(OH)(2)D(3)-mediated gut Ca(2+) absorption and decreased renal Ca(2+) excretion, without any differences in bone-related release of Ca(2+) or CT secretion among the three genotypes that could explain the differences in their calcemic responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2739709PMC
http://dx.doi.org/10.1152/ajprenal.00164.2009DOI Listing

Publication Analysis

Top Keywords

serum ca2+
12
c-p- mice
12
mice
9
1alpha25oh2 vitamin
8
parathyroid hormone
8
ca2+
8
renal ca2+
8
ca2+ excretion
8
calcemic responses
8
three genotypes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!