Our objectives in this study were as follows: 1) to determine the rate of creatine accretion by the neonatal piglet; 2) identify the sources of this creatine; 3) measure the activities of the enzymes of creatine synthesis; and 4) to estimate the burden that endogenous creatine synthesis places on the metabolism of the 3 amino acids required for this synthesis: glycine, arginine, and methionine. We found that piglets acquire 12.5 mmol of total creatine (creatine plus creatine phosphate) between 4 and 11 d of age. As much as one-quarter of creatine accretion in neonatal piglets may be provided by sow milk and three-quarters by de novo synthesis by piglets. This rate of creatine synthesis makes very large demands on arginine and methionine metabolism, although the magnitude of the demand depends on the rate of remethylation of homocysteine and of reamidination of ornithine. Of the 2 enzymes of creatine synthesis, we found high activity of l-arginine:glycine amidinotransferase in piglet kidneys and pancreas and of guanidinoacetate methyltransferase in piglet livers. Piglet livers also had appreciable activities of methionine adenosyltransferase, which synthesizes S-adenosylmethionine, and of betaine:homocysteine methyltransferase, methionine synthase, and methylene tetrahydrofolate reductase, which are required for the remethylation of homocysteine to methionine. Creatine synthesis is a quantitatively major metabolic process in piglets.

Download full-text PDF

Source
http://dx.doi.org/10.3945/jn.109.105411DOI Listing

Publication Analysis

Top Keywords

creatine synthesis
24
creatine
12
major metabolic
8
metabolic process
8
neonatal piglets
8
rate creatine
8
creatine accretion
8
accretion neonatal
8
enzymes creatine
8
arginine methionine
8

Similar Publications

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

Background: Dichloroacetate (DCA) has shown potential in modulating cellular metabolism and inflammation, particularly in cardiac conditions. This study investigates DCA's protective effects in a mouse model of myocardial infarction (MI), focusing on its ability to enhance cardiac function, reduce inflammation, and shift macrophage polarization from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype.

Methods: An acute MI model was created using left anterior descending coronary artery ligation.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.

View Article and Find Full Text PDF

Whole grain flour is considered a part of a healthy diet, especially when produced with pigmented wheat (). However, the specific metabolic pathways and mechanisms by which these metabolites affect the end-use quality of pigmented wheat varieties still need to be better understood. This study examined the relationship between metabolite concentrations and the end-use quality of three wheat varieties: common wheat (CW, JM20), black wheat (BW, HJ1), and green wheat (GW, HZ148).

View Article and Find Full Text PDF

The Effects of CrossFit Practice on Physical Fitness and Overall Quality of Life.

Int J Environ Res Public Health

December 2024

Centre of Research, Education, Innovation and Intervention in Sport and Porto Biomechanics Laboratory, Faculty of Sport, University of Porto, 4200-450 Porto, Portugal.

We have examined the impact of CrossFit workout sessions on physical fitness, comparing the obtained outcomes with the recommendations of the American College of Sports Medicine. In addition, we provide suggestions to improve training monitoring, as well as practical applications for researchers, coaches and practitioners. CrossFit imposes high cardiorespiratory and metabolic demands, promoting improvements in circulatory capacity, oxidative metabolism and muscular endurance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!