The last 10 years have seen microarrays go from being a nascent technology available only in a limited range of research facilities to becoming a ubiquitous approach to expression profiling. Developments in microarray technology have allowed the content of arrays to increase to the point that complete transcriptomes can be assayed on a single array, whilst developments in RNA labelling technology have reduced the amount of RNA needed down to the point where single cell profiling is technically possible. Recently it has also become possible to generate expression data from formalin-fixed paraffin-embedded archival samples. With the range of samples that can now be successfully profiled by microarray analysis this should be a good time to be running a microarray core facility. However, the arrival of Next Generation Sequencers means that for the first time there is an alternate platform that can potentially give a more complete picture of cellular expression than a microarray. Next Generation Sequencers are still in their infancy as a platform for expression profiling. Currently there are simply not enough Next Generation Sequencers in operation to meet the level of demand for expression profiling that microarray facilities service, but more systems are constantly becoming available. Looking ahead it seems certain that some proportion of expression profiling work will move from microarrays to Next Generation Sequencers, so now is a good time to consider some of the factors that might affect how significant that switch will be.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bfgp/elp012 | DOI Listing |
Sci Rep
December 2024
Department of Orthopedics, The Second Affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
The DNA cross-link repair 1B (DCLRE1B) gene is involved in repairing cross-links between DNA strands, including those associated with Hoyeraal-Hreidarsson syndrome and congenital dyskeratosis. However, its role in tumours is not well understood. DCLRE1B expression profiles were examined in tumour tissues and normal tissues using TCGA, GTEx, and TARGET datasets.
View Article and Find Full Text PDFNat Commun
December 2024
Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA.
Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.
View Article and Find Full Text PDFSci Rep
December 2024
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.
Entomopathogenic nematodes (EPNs) associated with their symbiotic bacteria can effectively kill insect pests, in agriculture, forestry and floriculture. Industrial-scale production techniques for EPNs have been established, including solid and liquid monoculture systems. It is found that supplement of 0.
View Article and Find Full Text PDFNat Commun
December 2024
IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy.
Acute myeloid leukemia (AML) is an aggressive disease with a high relapse rate. In this study, we map the metabolic profile of CD34(CD38) AML cells and the extracellular vesicle signatures in circulation from AML patients at diagnosis. CD34 AML cells display high antioxidant glutathione levels and enhanced mitochondrial functionality, both associated with poor clinical outcomes.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
The bipolar disorder (BD) risk gene ANK3 encodes the scaffolding protein AnkyrinG (AnkG). In neurons, AnkG regulates polarity and ion channel clustering at axon initial segments and nodes of Ranvier. Disruption of neuronal AnkG causes BD-like phenotypes in mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!