Background: Fast-growing Eucalyptus grandis trees are one of the most efficient producers of wood in South Africa. The most serious problem affecting the quality and yield of solid wood products is the occurrence of end splitting in logs. Selection of E. grandis planting stock that exhibit preferred wood qualities is thus a priority of the South African forestry industry. We used microarray-based DNA-amplified fragment length polymorphism (AFLP) analysis in combination with expression profiling to develop fingerprints and profile gene expression of wood-forming tissue of seven different E. grandis trees.

Results: A 1578-probe cDNA microarray was constructed by arraying 768 cDNA-AFLP clones and 810 cDNA library clones from seven individual E. grandis trees onto silanised slides. The results revealed that 32% of the spotted fragments showed distinct expression patterns (with a fold change of at least 1.4 or -1.4 and a p value of 0.01) could be grouped into clusters representing co-expressed genes. Evaluation of the binary distribution of cDNA-AFLP fragments on the array showed that the individual genotypes could be discriminated.

Conclusion: A simple, yet general method was developed for genotyping and expression profiling of wood-forming tissue of E. grandis trees differing in their splitting characteristics and in their lignin contents. Evaluation of gene expression profiles and the binary distribution of cDNA-AFLP fragments on the chip suggest that the prototype chip developed could be useful for transcript profiling and for the identification of Eucalyptus trees with preferred wood quality traits in commercial breeding programmes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2698882PMC
http://dx.doi.org/10.1186/1472-6750-9-51DOI Listing

Publication Analysis

Top Keywords

grandis trees
12
expression profiles
8
eucalyptus grandis
8
preferred wood
8
expression profiling
8
gene expression
8
wood-forming tissue
8
tissue grandis
8
binary distribution
8
distribution cdna-aflp
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!