Biophysical studies support a predicted superhelical structure with armadillo repeats for Ric-8.

Protein Sci

Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.

Published: June 2009

Ric-8 is a highly conserved cytosolic protein (MW 63 KDa) initially identified in C. elegans as an essential factor in neurotransmitter release and asymmetric cell division. Two different isoforms have been described in mammals, Ric-8A and Ric-8B; each possess guanine nucleotide exchange activity (GEF) on heterotrimeric G-proteins, but with different Galpha subunits specificities. To gain insight on the mechanisms involved in Ric-8 cellular functions it is essential to obtain some information about its structure. Therefore, the aim of this work was to create a structural model for Ric-8. In this case, it was not possible to construct a model based on comparison with a template structure because Ric-8 does not present sequence similarity with any other protein. Consequently, different bioinformatics approaches that include protein folding and structure prediction were used. The Ric-8 structural model is composed of 10 armadillo folding motifs, organized in a right-twisted alpha-alpha super helix. In order to validate the structural model, a His-tag fusion construct of Ric-8 was expressed in E. coli, purified by affinity and anion exchange chromatography and subjected to circular dichroism analysis (CD) and thermostability studies. Ric-8 is approximately 80% alpha helix, with a Tm of 43.1 degrees C, consistent with an armadillo-type structure such as alpha-importin, a protein composed of 10 armadillo repeats. The proposed structural model for Ric-8 is intriguing because armadillo proteins are known to interact with multiple partners and participate in diverse cellular functions. These results open the possibility of finding new protein partners for Ric-8 with new cellular functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774424PMC
http://dx.doi.org/10.1002/pro.124DOI Listing

Publication Analysis

Top Keywords

structural model
16
cellular functions
12
ric-8
10
armadillo repeats
8
ric-8 cellular
8
model ric-8
8
composed armadillo
8
structure
5
protein
5
model
5

Similar Publications

Faricimab efficacy in type 1 macular neovascularization: AI-assisted quantification of pigment epithelium detachment (PED) volume reduction over 12 months in Naïve and switch eyes.

Int J Retina Vitreous

January 2025

Fondation Asile des Aveugles, Department of Ophthalmology, Jules-Gonin Eye Hospital, University of Lausanne, Avenue de France 54, Lausanne, 1001, Switzerland.

Background: This study evaluates the efficacy of intravitreal Faricimab in reducing pigment epithelium detachment (PED) and fluid volumes in both treatment-naïve eyes and eyes unresponsive to anti-VEGF mono-therapies, all diagnosed with type 1 macular neovascularization (T1 MNV) over a period of 12-month.

Methods: A retrospective, single-center cohort study was conducted at the Jules Gonin Eye Hospital, Lausanne, Switzerland. Clinical records of treatment-naïve and non-responder switch patients presenting T1 MNV secondary to neovascular age-related macular degeneration (nAMD) from September 2022 to March 2023 were reviewed.

View Article and Find Full Text PDF

Neuropathological contributions to grey matter atrophy and white matter hyperintensities in amnestic dementia.

Alzheimers Res Ther

January 2025

Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Crta M40, km38, Madrid, 28223, Spain.

Background: Dementia patients commonly present multiple neuropathologies, worsening cognitive function, yet structural neuroimaging signatures of dementia have not been positioned in the context of combined pathology. In this study, we implemented an MRI voxel-based approach to explore combined and independent effects of dementia pathologies on grey and white matter structural changes.

Methods: In 91 amnestic dementia patients with post-mortem brain donation, grey matter density and white matter hyperintensity (WMH) burdens were obtained from pre-mortem MRI and analyzed in relation to Alzheimer's, vascular, Lewy body, TDP-43, and hippocampal sclerosis (HS) pathologies.

View Article and Find Full Text PDF

Inter-individual variability in symptoms and the dynamic nature of brain pathophysiology present significant challenges in constructing a robust diagnostic model for migraine. In this study, we aimed to integrate different types of magnetic resonance imaging (MRI), providing structural and functional information, and develop a robust machine learning model that classifies migraine patients from healthy controls by testing multiple combinations of hyperparameters to ensure stability across different migraine phases and longitudinally repeated data. Specifically, we constructed a diagnostic model to classify patients with episodic migraine from healthy controls, and validated its performance across ictal and interictal phases, as well as in a longitudinal setting.

View Article and Find Full Text PDF

Purpose: This study aims to develop a deep-learning-based software capable of detecting and differentiating microaneurysms (MAs) as hyporeflective or hyperreflective on structural optical coherence tomography (OCT) images in patients with non-proliferative diabetic retinopathy (NPDR).

Methods: A retrospective cohort of 249 patients (498 eyes) diagnosed with NPDR was analysed. Structural OCT scans were obtained using the Heidelberg Spectralis HRA + OCT device.

View Article and Find Full Text PDF

Drums are the core working mechanism of the coal mining machine for coal mining. The structural design level of the drum is crucial for mining efficiency and safety production. Traditional design methods not only have long design cycles and high costs, but also limited design capabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!