In this study the development of a procedure based on capillary electrophoresis after enzymatic reaction at capillary inlet methodology for the screening and in vitro evaluation of the biological activity of acetylcholinesterase (AChE) inhibitors is presented. The progress of the enzymatic reaction of the hydrolysis of acetylthiocholine at pH 8 in the presence of AChE and the inhibitor studied is determined by measuring at 230 nm the peak area of the reaction product thiocholine (TCh). In the method employed the capillary was first filled with 30 mM borate-phosphate buffer (pH 8.0) and subsequently, plugs of: (i) water, (ii) AChE solution, (iii) substrate solution with or without inhibitor, (iv) AChE solution, and (v) water, were hydrodynamically injected into the capillary, and were allowed to stand (and react) during a waiting period of 2 min. The applicability of the proposed methodology to estimate different kinetic parameters of interest such as inhibition constants K(i), identification of inhibitory action mechanism and IC(50), is evaluated using compounds with known activity, tacrine edrophonium, and neostigmine. The results obtained are compared with bibliographic values and confirm the effectiveness of the methodology proposed. Finally a method for AChE Inhibitor screening is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.200800701DOI Listing

Publication Analysis

Top Keywords

enzymatic reaction
12
reaction capillary
8
capillary inlet
8
ache inhibitor
8
ache solution
8
capillary
5
ache
5
screening acetylcholinesterase
4
acetylcholinesterase inhibitors
4
inhibitors enzymatic
4

Similar Publications

Tattooing is a popular form of body art that has evolved from ancient times into being part of modern society. The understanding of biotransformation processes of coloring tattoo pigments in human skin is limited although skin reactions to tattoos with unknown culprits occur. Electrochemistry coupled to mass spectrometry (EC-MS) has widely been used as a tool for a purely instrumental approach to simulating the enzymatic biotransformation of xenobiotics.

View Article and Find Full Text PDF

Structures and properties of α-amylase and glucoamylase immobilized by ZIF-8 via one-pot preparation.

Enzyme Microb Technol

December 2024

Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.

The immobilization of α-amylase and glucoamylase using a metal-organic framework (enzyme@ZIF-8) was prepared in situ through a one-pot method. The morphology, crystal structure, and molecular characteristics of the free enzyme and enzyme@ZIF-8 were characterized. The enzyme@ZIF-8 exhibited the rhombic dodecahedron morphology, with a decrease in particle size.

View Article and Find Full Text PDF

Advanced Catalysts for the Chemical Recycling of Plastic Waste.

Adv Mater

January 2025

Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.

Plastic products bring convenience to various aspects of the daily lives due to their lightweight, durability and versatility, but the massive accumulation of post-consumer plastic waste is posing significant environmental challenges. Catalytic methods can effectively convert plastic waste into value-added feedstocks, with catalysts playing an important role in regulating the yield and selectivity of products. This review explores the latest advancements in advanced catalysts applied in thermal catalysis, microwave-assisted catalysis, photocatalysis, electrocatalysis, and enzymatic catalysis reaction systems for the chemical recycling of plastic waste into valuable feedstocks.

View Article and Find Full Text PDF

Genetic studies of the metabolome can uncover enzymatic and transport processes shaping human metabolism. Using rare variant aggregation testing based on whole-exome sequencing data to detect genes associated with levels of 1,294 plasma and 1,396 urine metabolites, we discovered 235 gene-metabolite associations, many previously unreported. Complementary approaches (genetic, computational (in silico gene knockouts in whole-body models of human metabolism) and one experimental proof of principle) provided orthogonal evidence that studies of rare, damaging variants in the heterozygous state permit inferences concordant with those from inborn errors of metabolism.

View Article and Find Full Text PDF

Phospholipids are the most abundant component in lipid membranes and are essential for the structural and functional integrity of the cell. In eukaryotic cells, phospholipids are primarily synthesized de novo through the Kennedy pathway that involves multiple enzymatic processes. The terminal reaction is mediated by a group of cytidine-5'-diphosphate (CDP)-choline /CDP-ethanolamine-phosphotransferases (CPT/EPT) that use 1,2-diacylglycerol (DAG) and CDP-choline or CDP-ethanolamine to produce phosphatidylcholine (PC) or phosphatidylethanolamine (PE) that are the main phospholipids in eukaryotic cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!