We present an ocular adaptive optics system with a wavefront sampling rate of 240 Hz and maximum recorded closed-loop bandwidth close to 25 Hz, but with typical performances around 10 Hz. The measured bandwidth depended on the specific system configuration and the particular subject tested. An analysis of the system performance as a function of achieved bandwidth showed consistently higher Strehl ratios for higher closed-loop bandwidths. This may be attributed to a combination of limitations on the available technology and the dynamics of ocular aberrations. We observed dynamic behaviour with a maximum frequency content around 30 Hz.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.11.002597DOI Listing

Publication Analysis

Top Keywords

higher closed-loop
8
closed-loop bandwidths
8
ocular adaptive
8
adaptive optics
8
benefit higher
4
bandwidths ocular
4
optics ocular
4
optics system
4
system wavefront
4
wavefront sampling
4

Similar Publications

Circular RNA Formation and Degradation Are Not Directed by Universal Pathways.

Int J Mol Sci

January 2025

Department of Rare Diseases, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.

Circular RNAs (circRNAs) are a class of unique transcripts characterized by a covalently closed loop structure, which differentiates them from conventional linear RNAs. The formation of circRNAs occurs co-transcriptionally and post-transcriptionally through a distinct type of splicing known as back-splicing, which involves the formation of a head-to-tail splice junction between a 5' splice donor and an upstream 3' splice acceptor. This process, along with exon skipping, intron retention, cryptic splice site utilization, and lariat-driven intron processing, results in the generation of three main types of circRNAs (exonic, intronic, and exonic-intronic) and their isoforms.

View Article and Find Full Text PDF

Technology usage and glycaemic outcomes in a single tertiary centre with an ethnically diverse and socioeconomically deprived cohort of children with type 1 diabetes mellitus.

Front Clin Diabetes Healthc

January 2025

Department of Endocrinology and Diabetes, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom.

Background: The UK National Paediatric Diabetes Audit (NPDA) data reports disparities in Haemoglobin A1c (HbA1c) levels among children and young people (CYP) with Type 1 Diabetes (T1D), with higher levels in those of Black ethnic background and lower socioeconomic status who have less access to technology. We investigate HbA1c differences in a T1D cohort with higher than national average technology uptake where > 60% come from an ethnic minority and/or socioeconomically deprived population.

Design & Methods: Retrospective cross-sectional study investigating the influence of demographic factors, technology use, and socioeconomic status (SES) on glycaemic outcomes.

View Article and Find Full Text PDF

Introduction: The understanding of the interaction of closed-loop control of ventilation and oxygenation, specifically fraction of inspired oxygen (FiO2) and positive end-expiratory pressure (PEEP), and fluid resuscitation after burn injury and acute lung injury from smoke inhalation is limited. We compared the effectiveness of FiO2, PEEP, and ventilation adjusted automatically using adaptive support ventilation (ASV) and decision support fluid resuscitation based on urine output in a clinically relevant conscious ovine model of lung injury secondary to combined smoke inhalation and major burn injury.

Methods: Sheep were subjected to burn and smoke inhalation injury under deep anesthesia and analgesia.

View Article and Find Full Text PDF

Soft robots and bioinspired systems have revolutionized robot design by incorporating flexibility and deformable materials inspired by nature's ingenious designs. Similar to many robotic applications, sensing and perception are paramount to enable soft robots to adeptly navigate the unpredictable real world, ensuring safe interactions with both humans and the environment. Despite recent progress, soft robot sensorization still faces significant challenges due to the virtual infinite degrees of freedom of the system and the need for efficient computational models capable of estimating valuable information from sensor data.

View Article and Find Full Text PDF

Omnidirectional Wireless Power Transfer for Millimetric Magnetoelectric Biomedical Implants.

IEEE J Solid-State Circuits

November 2024

Department of Electrical and Computer Engineering, Rice University, Houston TX, 77005, USA.

Miniature bioelectronic implants promise revolutionary therapies for cardiovascular and neurological disorders. Wireless power transfer (WPT) is a significant method for miniaturization, eliminating the need for bulky batteries in today's devices. Despite successful demonstrations of millimetric battery-free implants in animal models, the robustness and efficiency of WPT are known to degrade significantly under misalignment incurred by body movements, respiration, heart beating, and limited control of implant orientation during surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!