A pulse sequence with magnetization transfer contrast and fat suppression was used in three-dimensional magnetic resonance imaging of the breast. Two healthy volunteers, one person with silicone implants, and 12 patients with clinical and/or mammographic findings suspicious for malignancy were evaluated prior to and following infusion of gadopentetate dimeglumine. Imaging time was approximately 7 minutes for each set of data (128 sections). Final voxel dimensions ranged from 1.4 x 0.8 x 0.8 mm to 1.6 x 0.9 x 0.9 mm. All carcinomas, including ductal and lobular types, were enhanced before and after infusion of contrast medium. Multifocal carcinoma and inflammatory carcinoma could be clearly visualized. Enhancement was not evident in patients with fat necrosis (n = 1) or scar (n = 1). Fibrocystic changes in one patient were visible as areas of increased signal intensity on preinfusion images. Resolution and contrast of MR images obtained with this pulse sequence appeared to be improved over that achieved with conventional breast MR imaging techniques. This method has the potential to supplement conventional diagnostic methods in the evaluation of breast disease.

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiology.181.3.1947093DOI Listing

Publication Analysis

Top Keywords

pulse sequence
12
imaging breast
8
fat suppression
8
magnetization transfer
8
transfer contrast
8
three-dimensional gadolinium-enhanced
4
imaging
4
gadolinium-enhanced imaging
4
breast
4
breast pulse
4

Similar Publications

Runx2-NLRP3 Axis Orchestrates Matrix Stiffness-evoked Vascular Smooth Muscle Cell Inflammation.

Am J Physiol Cell Physiol

January 2025

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.

Arterial stiffening is a hallmark of chronic kidney disease (CKD) related cardiovascular events and is primarily attributed to the elevated matrix stiffness. Stiffened arteries are accompanied by low-grade inflammation, but the causal effects of matrix stiffness on inflammation remain unknown. For analysis of the relationship between arterial stiffness and vascular inflammation, pulse wave velocity (PWV) and aortic inflammatory markers were analyzed in an adenine-induced mouse model of CKD in chronological order.

View Article and Find Full Text PDF

Background: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is one of the most common inherited cerebral small vessel diseases caused by the NOTCH3 gene mutation. This mutation leads to the accumulation of NOTCH3 extracellular domain protein (NOTCH3) into the cerebral arterioles, causing recurrent stroke, white matter lesions, and cognitive impairment. With the development of gene sequencing technology, cysteine-sparing mutations can also cause CADASIL disease, however, the pathogenicity and pathogenic mechanisms of cysteine-sparing mutations remain controversial.

View Article and Find Full Text PDF

Prototype analysis of a low-power, small-scale wearable medical device.

J Electr Bioimpedance

January 2024

Electrical Engineering Department, State University of Santa Catarina, Santa Catarina, Brazil.

Wearable and portable devices are gaining significant popularity across consumer electronics as well as in medical and industrial fields. To ensure that these devices are both comfortable and appealing to users, they need to have low battery consumption and be compact in both size and weight. The EGluco project is focused on developing a wearable device for non-invasive blood glucose monitoring.

View Article and Find Full Text PDF

Rapid and accurate multi-phenotype imputation for millions of individuals.

Nat Commun

January 2025

Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs & Fisheries college, Jimei University, Xiamen, Fujian, People's Republic of China.

Deep phenotyping can enhance the power of genetic analysis, including genome-wide association studies (GWAS), but the occurrence of missing phenotypes compromises the potential of such resources. Although many phenotypic imputation methods have been developed, the accurate imputation of millions of individuals remains challenging. In the present study, we have developed a multi-phenotype imputation method based on mixed fast random forest (PIXANT) by leveraging efficient machine learning (ML)-based algorithms.

View Article and Find Full Text PDF
Article Synopsis
  • PFAS are stable yet harmful chemicals, vital for modern technologies but persistent pollutants affecting health.
  • The study focuses on completely breaking down GenX, a PFAS replacement, using electrocatalysis in LiOH solutions with specialized nanocatalysts.
  • The approach is environmentally friendly, utilizing nonprecious materials and without the need for auxiliary chemicals, offering a potential solution to mitigate PFAS pollution.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!