A pulse sequence with magnetization transfer contrast and fat suppression was used in three-dimensional magnetic resonance imaging of the breast. Two healthy volunteers, one person with silicone implants, and 12 patients with clinical and/or mammographic findings suspicious for malignancy were evaluated prior to and following infusion of gadopentetate dimeglumine. Imaging time was approximately 7 minutes for each set of data (128 sections). Final voxel dimensions ranged from 1.4 x 0.8 x 0.8 mm to 1.6 x 0.9 x 0.9 mm. All carcinomas, including ductal and lobular types, were enhanced before and after infusion of contrast medium. Multifocal carcinoma and inflammatory carcinoma could be clearly visualized. Enhancement was not evident in patients with fat necrosis (n = 1) or scar (n = 1). Fibrocystic changes in one patient were visible as areas of increased signal intensity on preinfusion images. Resolution and contrast of MR images obtained with this pulse sequence appeared to be improved over that achieved with conventional breast MR imaging techniques. This method has the potential to supplement conventional diagnostic methods in the evaluation of breast disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1148/radiology.181.3.1947093 | DOI Listing |
Am J Physiol Cell Physiol
January 2025
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
Arterial stiffening is a hallmark of chronic kidney disease (CKD) related cardiovascular events and is primarily attributed to the elevated matrix stiffness. Stiffened arteries are accompanied by low-grade inflammation, but the causal effects of matrix stiffness on inflammation remain unknown. For analysis of the relationship between arterial stiffness and vascular inflammation, pulse wave velocity (PWV) and aortic inflammatory markers were analyzed in an adenine-induced mouse model of CKD in chronological order.
View Article and Find Full Text PDFFront Mol Neurosci
December 2024
Department of Neurology, Henan Province People's Hospital, Xinxiang Medical University, Zhengzhou, China.
Background: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is one of the most common inherited cerebral small vessel diseases caused by the NOTCH3 gene mutation. This mutation leads to the accumulation of NOTCH3 extracellular domain protein (NOTCH3) into the cerebral arterioles, causing recurrent stroke, white matter lesions, and cognitive impairment. With the development of gene sequencing technology, cysteine-sparing mutations can also cause CADASIL disease, however, the pathogenicity and pathogenic mechanisms of cysteine-sparing mutations remain controversial.
View Article and Find Full Text PDFJ Electr Bioimpedance
January 2024
Electrical Engineering Department, State University of Santa Catarina, Santa Catarina, Brazil.
Wearable and portable devices are gaining significant popularity across consumer electronics as well as in medical and industrial fields. To ensure that these devices are both comfortable and appealing to users, they need to have low battery consumption and be compact in both size and weight. The EGluco project is focused on developing a wearable device for non-invasive blood glucose monitoring.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs & Fisheries college, Jimei University, Xiamen, Fujian, People's Republic of China.
Deep phenotyping can enhance the power of genetic analysis, including genome-wide association studies (GWAS), but the occurrence of missing phenotypes compromises the potential of such resources. Although many phenotypic imputation methods have been developed, the accurate imputation of millions of individuals remains challenging. In the present study, we have developed a multi-phenotype imputation method based on mixed fast random forest (PIXANT) by leveraging efficient machine learning (ML)-based algorithms.
View Article and Find Full Text PDFChemSusChem
January 2025
University of Rochester, Department of Chemical Engineering, ., 14627, Rochester, UNITED STATES OF AMERICA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!