Plasma membrane depolarization as a determinant of the first phase of insulin secretion.

Am J Physiol Endocrinol Metab

Institute of Pharmacology and Toxicology, Technical University of Braunschweig, Braunschweig, Germany.

Published: August 2009

The role of plasma membrane depolarization as a determinant of the initial phase of insulin secretion was investigated. NMRI mouse islets and beta-cells were used to measure the kinetics of insulin secretion, ATP and ADP content, membrane potential, and cytosolic free Ca(2+) concentration ([Ca(2+)](i)). The depolarization of metabolically intact beta-cells by KCl corresponded closely to the theoretical values. In contrast to physiological (glucose) or pharmacological (tolbutamide) ATP-sensitive K(+) (K(ATP)) channel block, KCl depolarization did not induce action potential spiking. The depolarization by 15 mM K(+) (21 mV) corresponded to the plateau depolarization by 50 or 500 microM tolbutamide; that by 40 mM K(+) (41 mV) corresponded to the action potential peaks. Nifedipine and diazoxide abolished action potentials but not KCl depolarization, suggesting that the depolarizing strength of 15, but not 40 mM K(+) corresponds to that of K(ATP) channel closure. K(+) (40 mM) induced a massive secretory response in the presence of 5 mM glucose, whereas 15 mM K(+), like 50 microM tolbutamide, was only slightly effective, even though a marked increase in [Ca(2+)](i) was produced. Raising glucose from 5 to 10 mM in the continued presence of 15 mM K(+) resulted in a strongly enhanced biphasic response. The depolarization pattern of this combination could be mimicked by combining basal glucose with 15 mM K(+) and 50 microM tolbutamide; however, the secretory response to these nonnutrients was much weaker. In conclusion, the initial secretory response to nutrient secretagogues is largely influenced by signaling mechanisms that do not involve depolarization.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.90981.2008DOI Listing

Publication Analysis

Top Keywords

insulin secretion
12
microm tolbutamide
12
secretory response
12
depolarization
9
plasma membrane
8
membrane depolarization
8
depolarization determinant
8
phase insulin
8
katp channel
8
kcl depolarization
8

Similar Publications

(1) Background: It has been reported that people affected by COVID-19, an infectious disease caused by SARS-CoV-2, suffer from various diseases, after infection. One of the most serious problems is the increased risk of developing diabetes after COVID-19 infection. However, a treatment for post-COVID-19 infection diabetes has not yet been established.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM), a serious metabolic disorder, is a worldwide health problem due to the alarming rise in prevalence and elevated morbidity and mortality. Chronic hyperglycemia, insulin resistance, and ineffective insulin effect and secretion are hallmarks of T2DM, leading to many serious secondary complications. These include, in particular, cardiovascular disorders, diabetic neuropathy, nephropathy and retinopathy, diabetic foot, osteoporosis, liver damage, susceptibility to infections and some cancers.

View Article and Find Full Text PDF

Polyphenolic Compounds in Fabaceous Plants with Antidiabetic Potential.

Pharmaceuticals (Basel)

January 2025

Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico.

Diabetes mellitus (DM) is a chronic non-communicable disease with an increasing prevalence in Latin America and worldwide, impacting various social and economic areas. It causes numerous complications for those affected. Current treatments for diabetes include oral hypoglycemic drugs, which can lead to adverse effects and health complications.

View Article and Find Full Text PDF

Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) have emerged as extraordinary bioactive lipids, exhibiting diverse bioactivities, from the enhancement of insulin secretion and the optimization of blood glucose absorption to anti-inflammatory effects. The intricate nature of FAHFAs' structure reflects a synthetic challenge that requires the strategic introduction of ester bonds along the hydroxy fatty acid chain. Our research seeks to create an effective methodology for generating varied FAHFA derivatives.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is related to the autoimmune destruction of β-cells, leading to their almost complete absence in patients with longstanding T1D. However, endogenous insulin secretion persists in such patients as evidenced by the measurement of plasma C-peptide. Recently, a low level of insulin has been found in non-β islet cells of patients with longstanding T1D, indicating that other islet cell types may contribute to persistent insulin secretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!