Mutations in the enzyme glycyl-tRNA synthetase (GARS) cause motor and sensory axon loss in the peripheral nervous system in humans, described clinically as Charcot-Marie-Tooth type 2D or distal spinal muscular atrophy type V. Here, we characterise a new mouse mutant, Gars(C201R), with a point mutation that leads to a non-conservative substitution within GARS. Heterozygous mice with a C3H genetic background have loss of grip strength, decreased motor flexibility and disruption of fine motor control; this relatively mild phenotype is more severe on a C57BL/6 background. Homozygous mutants have a highly deleterious set of features, including movement difficulties and death before weaning. Heterozygous animals have a reduction in axon diameter in peripheral nerves, slowing of nerve conduction and an alteration in the recovery cycle of myelinated axons, as well as innervation defects. An assessment of GARS levels showed increased protein in 15-day-old mice compared with controls; however, this increase was not observed in 3-month-old animals, indicating that GARS function may be more crucial in younger animals. We found that enzyme activity was not reduced detectably in heterozygotes at any age, but was diminished greatly in homozygous mice compared with controls; thus, homozygous animals may suffer from a partial loss of function. The Gars(C201R) mutation described here is a contribution to our understanding of the mechanism by which mutations in tRNA synthetases, which are fundamentally important, ubiquitously expressed enzymes, cause axonopathy in specific sets of neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2707104PMC
http://dx.doi.org/10.1242/dmm.002527DOI Listing

Publication Analysis

Top Keywords

glycyl-trna synthetase
8
synthetase gars
8
charcot-marie-tooth type
8
mice compared
8
compared controls
8
gars
5
enu-induced mutation
4
mutation mouse
4
mouse glycyl-trna
4
peripheral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!