Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To assess the role of soluble intracellular compounds and DNA-bound proteins in the intrinsic protection against radiation-induced DNA strand breaks, the alkaline unwinding technique was applied to cellular, nuclear, and nucleoid monolayers. It was found that, when the soluble intracellular compounds were removed from human fibroblasts by permeabilization (nuclear monolayers) and irradiated in a phosphate buffer containing 150 mM monovalent cations (Na+ and K+) and 0.8 mM MgCl2, the frequency of radiation-induced DNA strand breaks increased twofold. Removal of both soluble intracellular compounds and DNA-bound proteins from the cells by a pretreatment with 2 M NaCl (nucleoid monolayers) resulted in a 100-fold increase in the frequency of strand-break induction by gamma radiation. Expressed as percentage of total intrinsic protection against radiation-induced DNA strand breaks, DNA-bound protein contributed 99% compared to 1% by soluble intracellular compounds. Using a different experimental approach it was found that the radioprotective capacity of soluble intracellular compounds was equivalent to about 5 mM dimethyl sulfoxide (DMSO) and DNA-bound proteins to about 70 mM DMSO. It is concluded that DNA-bound proteins play a much greater role than soluble intracellular compounds in the intrinsic protection against radiation-induced DNA strand breaks in cultured human cells.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!