Vertebrate teeth are attached to jaws by a variety of mechanisms, including acrodont, pleurodont, and thecodont modes of attachment. Recent studies have suggested that various modes of attachment exist within each subcategory. Especially squamates feature a broad diversity of modes of attachment. Here we have investigated tooth attachment tissues in the late cretaceous mosasaur Clidastes and compared mosasaur tooth attachment with modes of attachment found in other extant reptiles. Using histologic analysis of ultrathin ground sections, four distinct mineralized tissues that anchor mosasaur teeth to the jaw were identified: (i) an acellular cementum layer at the interface between root and cellular cementum, (ii) a massive cone consisting of trabecular cellular cementum, (iii) the mineralized periodontal ligament containing mineralized Sharpey's fibers, and (iv) the interdental ridges connecting adjacent teeth. The complex, multilayered attachment apparatus in mosasaurs was compared with attachment tissues in extant reptiles, including Iguana and Caiman. Based on our comparative analysis we postulate the presence of a quadruple-layer tissue architecture underlying reptilian tooth attachment, comprised of acellular cementum, cellular cementum, mineralized periodontal ligament, and interdental ridge (alveolar bone). We propose that the mineralization status of the periodontal ligament is a dynamic feature in vertebrate evolution subject to functional adaptation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2704977 | PMC |
http://dx.doi.org/10.1111/j.1525-142X.2009.00327.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!