Reverse micelle encapsulation as a model for intracellular crowding.

J Am Chem Soc

Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, USA.

Published: June 2009

Reverse micelles are discrete nanoscale particles composed of a water core surrounded by surfactant. The amount of water within the core of reverse micelles can be easily manipulated to directly affect the size of the reverse micelle particle. The water loading capacity of reverse micelles varies with temperature, and water can be shed if reverse micelles are exposed to low temperatures. The use of water shedding from the reverse micelle provides precise and comprehensive control over the amount of water available to solvate host molecules. Proteins encapsulated within reverse micelles can be studied to determine the effects of confinement and excluded volume. The data presented here provide an important bridge between commonly employed dilute in vitro studies and studies of the effects of a crowded environment, as found in vivo. Ubiquitin was encapsulated within bis(2-ethylhexyl) sodium sulfosuccinate AOT reverse micelles under various degrees of confinement and was compared with an analogously reconstituted sample of ubiquitin in the commonly used molecular crowding agent bovine serum albumin. The effects of encapsulation were monitored using chemical shift perturbation analysis of the amide (1)H and (15)N resonances. The results also reconcile alternative interpretations of protein cold denaturation within reverse micelles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja901871nDOI Listing

Publication Analysis

Top Keywords

reverse micelles
28
reverse micelle
12
reverse
10
water core
8
amount water
8
micelles
7
water
6
micelle encapsulation
4
encapsulation model
4
model intracellular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!