Matrix metalloproteinases are a family of enzymes which collectively can cleave all components of the extracellular matrix. In physiological situations, the expression of matrix metalloproteinases is very low. The increase of their expression leads to several diseases as atherosclerosis, restenosis, rheumatoid arthritis and cancers. In atherosclerosis, metalloproteinases are implicated in the rupture of the atheromatous plaque and contribute to acute vascular accident. Consequently, several studies hypothesized that the inhibition of matrix metalloproteinases activity could reduce the volume of the atheromatous plaque and prevent its destabilisation and therefore could be useful in the treatment of atherosclerosis. However, clinical results have so far been inconclusive because matrix metalloproteinases inhibitors are not very specific. The development of selective inhibitors and gene transfer approaches may better suit the treatment of atherosclerosis.
Download full-text PDF |
Source |
---|
Cells
January 2025
Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan.
We aimed to explore the therapeutic efficacy of miR-7704-modified extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (HUCMSCs) for osteoarthritis (OA) treatment. In vitro experiments demonstrated the successful transfection of miR-7704 into HUCMSCs and the isolation of EVs from these cells. In vivo experiments used an OA mouse model to assess the effects of the injection of miR-7704-modified EVs intra-articularly.
View Article and Find Full Text PDFDiscov Med
January 2025
Department of Orthopedics, Quanzhou First Hospital Affiliated to Fujian Medical University, 362000 Quanzhou, Fujian, China.
Background: High-mobility group box 1 () participates in the progression of osteosarcoma (OS) through the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Corylin, one of the active components of , has anti-oxidant, anti-inflammatory, and anti-tumor effects. This study investigates the association between corylin and , and their impact and mechanism of action on OS.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
Background: Intervertebral disc degeneration disease (IVDD) is a major cause of disability and reduced work productivity worldwide. Annulus fibrosus degeneration is a key contributor to IVDD, yet its mechanisms remain poorly understood. Autophagy, a vital process for cellular homeostasis, involves the lysosomal degradation of cytoplasmic proteins and organelles.
View Article and Find Full Text PDFPhysiol Rep
January 2025
Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA.
The use of genetically diverse mouse models offers a more accurate reflection of human genetic variability, improving the translatability of findings to heterogeneous human populations. This approach is particularly valuable in understanding diverse immune responses to disease by environmental exposures. This study investigates the inflammatory responses to acute exposures to mainstream cigarette smoke (CS) and environmental tobacco smoke (ETS) in two genetically diverse mouse strains, CC002/UncJ (UNC) & Diversity Outbred (J:DO).
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2025
Chongqing Chemical Industry Vocational College, Chongqing, 401228, China.
Purpose: Pachyman, derived from Poria cocos, has been used to treat gouty arthritis (GA) for thousands of years, although its precise role and mechanisms remain unclear. Herein, we investigate the therapeutic effects of pachyman on GA and explore their underlying mechanisms.
Methods: Network pharmacology and experimental methods were employed to investigate the therapeutic mechanisms of pachyman against GA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!