Oligosaccharides from land plants and algae: production and applications in therapeutics and biotechnology.

Curr Opin Microbiol

Laboratoire des Polysaccharides Microbiens et Végétaux, IUT/GB, Université de Picardie Jules Verne, Avenue des Facultés le Bailly, Amiens, France.

Published: June 2009

Since the past decades, oligosaccharides are considered for their potential biological activities. To exploit them, it was essential to obtain pure molecules in large amounts. Several strategies were developed to produce specific sugar sequences with specific substitution patterns from land plants and algae polysaccharides. Then, pure oligosaccharides were analyzed for their potential biological activities and relations between oligomers structure and function were tackled. First they can be health beneficial molecules when they are added to the diet to enhance the growth of probiotic bacteria, in that case, oligomers that resist to the digestive process are used as specific substrate for the growth of health beneficial bacteria. In other cases, oligomers have to interact with receptors on cells. In this instance, a specific conformation is needed to allow the sugar sequence to establish specific linkages with the receptor. So, to be adapted to the receptor, the oligosaccharides have to present specific groups to the receptor, there, the polymerization degree of oligosaccharides as well as the flexibility of the glycosidic linkages has to be considered.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mib.2009.04.007DOI Listing

Publication Analysis

Top Keywords

land plants
8
plants algae
8
potential biological
8
biological activities
8
health beneficial
8
specific
6
oligosaccharides
5
oligosaccharides land
4
algae production
4
production applications
4

Similar Publications

High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.

View Article and Find Full Text PDF

Phenomic selection based on parental spectra can be used to predict GCA and SCA in a sparse factorial design. Prediction approaches such as genomic selection can be game changers in hybrid breeding. They allow predicting the genetic values of hybrids without the need for their physical production.

View Article and Find Full Text PDF

A complete set of monosomic alien addition lines of Radish-Brassica oleracea exhibiting extensive variations was generated and well characterized for their chromosome behaviors and phenotypic characteristics. Monosomic alien addition lines (MAALs) are developed through interspecific hybridization, where an alien chromosome from a relative species is introduced into the genome of the recipient plant, serving as valuable genetic resources. In this study, an allotetraploid Raphanobrassica (RRCC, 2n = 36) was created from the interspecific hybridization between radish (Raphanus sativus, RR, 2n = 18) and Brassica oleracea (CC, 2n = 18).

View Article and Find Full Text PDF

Characterization of Hazelnut Trees in Open Field Through High-Resolution UAV-Based Imagery and Vegetation Indices.

Sensors (Basel)

January 2025

Department of Control and Computer Engineering (DAUIN), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.

The increasing demand for hazelnut kernels is favoring an upsurge in hazelnut cultivation worldwide, but ongoing climate change threatens this crop, affecting yield decreases and subject to uncontrolled pathogen and parasite attacks. Technical advances in precision agriculture are expected to support farmers to more efficiently control the physio-pathological status of crops. Here, we report a straightforward approach to monitoring hazelnut trees in an open field, using aerial multispectral pictures taken by drones.

View Article and Find Full Text PDF

Attention Score-Based Multi-Vision Transformer Technique for Plant Disease Classification.

Sensors (Basel)

January 2025

Department of AI & Big Data, Honam University, Gwangju 62399, Republic of Korea.

This study proposes an advanced plant disease classification framework leveraging the Attention Score-Based Multi-Vision Transformer (Multi-ViT) model. The framework introduces a novel attention mechanism to dynamically prioritize relevant features from multiple leaf images, overcoming the limitations of single-leaf-based diagnoses. Building on the Vision Transformer (ViT) architecture, the Multi-ViT model aggregates diverse feature representations by combining outputs from multiple ViTs, each capturing unique visual patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!