Adenosine 5'-triphosphate is frequently released by cells and acts as an agonist for G protein-coupled P2Y receptors and ligand-gated P2X cationic channels in numerous tissues. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors. In the pituitary gland, adenosine 5'-triphosphate is released from the endings of magnocellular hypothalamic neurons and by anterior pituitary cells through pathway(s) that are still not well characterized. This gland also expresses several members of each family of purinergic receptors. P2X and adenosine receptors are co-expressed in the somata and nerve terminals of vasopressin-releasing neurons as well as in some secretory pituitary cells. P2X receptors stimulate electrical activity and modulate InsP(3)-dependent calcium release from intracellular stores, whereas adenosine receptors terminate electrical activity. Calcium-mobilizing P2Y receptors are expressed in pituicytes, folliculo-stellate cells and some secretory cells of the anterior pituitary.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815212 | PMC |
http://dx.doi.org/10.1016/j.mce.2009.05.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!