Background And Purpose: We compared the dose-dependent reductions in cellular superoxide anion (O(2)(-)) by catalytic agents: superoxide dismutase (SOD), polyethylene glycol (PEG)-SOD and the nitroxide 4-hydroxy-2,2,6,6,-tetramethylpiperidine-1-oxyl (tempol) with uncharacterized antioxidants: 5,10,15,20-tetrakis (4-sulphonatophenyl) porphyrinate iron (III)(Fe-TTPS), (-)-cis-3,3',4',5,7-pentahydroxyflavane (2R,3R)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-1(2H)-benzopyran-3,5,7-triol (-epicatechin), 2-phenyl-1,2-benzisoselenazol-3(2H)-one (ebselen) and N-acetyl-L-cysteine (NAC) with the spin trap nitroblue tetrazolium (NBT) and with the vitamins or their analogues: ascorbate, alpha-tocopherol and 6-hydroxy-2,5,7,8-tetramethylkroman-2-carboxy acid (trolox).
Experimental Approach: O(2)(-) was generated in primary cultures of angiotensin II-stimulated preglomerular vascular smooth muscle cells from spontaneously hypertensive rats and detected by lucigenin-enhanced chemiluminescence.
Key Results: SOD, PEG-SOD, NAC and tempol produced a similar maximum inhibition of O(2)(-) of 80-90%. -Epicatechin, NBT, ebselen and Fe-TTPS were significantly (P < 0.0125) less effective (50-70%), whereas trolox, alpha-tocopherol and ascorbate had little action even over 24 h of incubation (<31%). Effectiveness in disrupted and intact cells was similar for the permeable agents, PEG-SOD and tempol, but was enhanced for SOD. Generation of O(2)(-) was increased by NAC and NBT at low concentrations but reduced at high concentrations.
Conclusions And Implications: Maximum effectiveness against cellular production of O(2)(-) requires cell membrane permeability and catalytic action as exemplified by PEG-SOD or tempol. NAC and NBT have biphasic effects on O(2)(-) production. Vitamins C and E or analogues have low efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737652 | PMC |
http://dx.doi.org/10.1111/j.1476-5381.2009.00259.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!