Incomplete denitrification and ammonia accumulation were found to cause proliferation of filamentous microorganisms in sequencing batch reactors (SBRs) for swine wastewater treatment. Foaming was observed in response to the accumulation of 115.2 and 12.2 mg/L of nitrate and ammonia, respectively. The mixed liquor suspended solids (MLSS) level in SBRs was decreased to 2,000 mg/L and the suspended solids in the effluent reached 200 mg/L when foaming appeared. However, the use of swine waste as an external carbon source for enhanced biological nitrogen removal was found to effectively control the foaming caused by filamentous microorganisms. Therefore, an optimum strategy for the addition of swine waste was designed using integrated real-time control to provide pulse input control of slurry based on the "nitrate knee" in the oxidation-reduction potential profile. In this case, the MLSS concentration was maintained at an average value of approximately 7,550 mg/L, while the SS in the effluent was less than 30 mg/L.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-009-0332-yDOI Listing

Publication Analysis

Top Keywords

carbon source
8
sequencing batch
8
batch reactors
8
nitrogen removal
8
swine wastewater
8
wastewater treatment
8
filamentous microorganisms
8
suspended solids
8
swine waste
8
mg/l
5

Similar Publications

Integrated transcriptomics and metabolomics analyses provide new insights into cassava in response to nitrogen deficiency.

Front Plant Sci

January 2025

National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.

Nitrogen deficiency is a key constraint on crop yield. Cassava, the world's sixth-largest food crop and a crucial source of feed and industrial materials, can thrive in marginal soils, yet its yield is still significantly affected by limited nitrogen availability. Investigating cassava's response mechanisms to nitrogen scarcity is therefore essential for advancing molecular breeding and identifying nitrogen-efficient varieties.

View Article and Find Full Text PDF

We report a green approach to prepare carbon dots (CDs) with fresh tomatoes as carbon sources and amino acids as dopants (ACDs) by a microwave assisted method. The synthesised CDs were analysed by UV-visible absorption spectroscopy, photoluminescence spectroscopy, high resolution transmission electron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photo electron spectroscopy. An MTT assay was used to evaluate the cytotoxicity of CDs toward L929 cells and found that CDs exhibit low cytotoxicity.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) have attracted significant attention in recent years due to its environment friendly characteristics and its participation in the multi-heteroatom doping of carbon quantum dots (CQDs). In this work, we present a simple, fast, and environment-friendly microwave synthesis approach for the synthesis of DES-assisted nitrogen and chloride co-doped CQDs (N,Cl-CQDs) using a choline chloride-urea based DES. A biomass-based precursor, i.

View Article and Find Full Text PDF

Characterization and application of fluorescent hydrogel films with superior mechanical properties in detecting iron(Ⅲ) ions and ferroptosis in oral cancer.

Front Bioeng Biotechnol

January 2025

Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.

A one-step hydrothermal method was applied to prepare carbon dots (CDs) with superior fluorescence properties using chitosan as a carbon source. The as-prepared carbon dots were then grafted onto a sodium alginate-gelatin hydrogel film to form a fluorescent hydrogel film (FHGF), emitting at 450 nm under excitation of 350 nm light. In comparison to the CDs, the fluorescence intensity of this film was maintained over 90.

View Article and Find Full Text PDF

Environmental and Economic Assessment of Wind Turbine Blade Recycling Approaches.

ACS Sustain Resour Manag

January 2025

Sandia National Laboratories, Albuquerque, New Mexico 87123, United States.

Wind energy offers a low emission source of energy while also being among the cheapest forms of electricity generation in the United States. While most materials in a wind turbine can be recycled at the end of their life, large composite blades are often treated as waste, leading to potential strains on regional landfills, a loss of durable materials, and forfeiture of embodied energy. Numerous approaches exist for recycling composite wind blades at various levels of technological and commercial maturity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!