We present a technique using a dual-output Mach-Zehnder modulator (MZM) with two wavelength inputs, one operating at low-bias and the other operating at high-bias, in order to cancel unwanted even-order harmonics in analog optical links. By using a dual-output MZM, this technique allows for two suppressed optical carriers to be transmitted to the receiver. Combined with optical amplification and balanced differential detection, the RF power of the fundamental is increased by 2 dB while the even-order harmonic is reduced by 47 dB, simultaneously. The RF noise figure and third-order spurious-free dynamic range (SFDR(3)) are improved by 5.4 dB and 3.6 dB, respectively. Using a wavelength sensitive, low V(pi) MZM allows the two wavelengths to be within 5.5 nm of each other for a frequency band from 10 MHz to 100 MHz and 10 nm for 1 GHz.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.17.009028 | DOI Listing |
Phys Rev Lett
December 2024
State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
We have observed the Berry phase effect associated with interband coherence in topological surface states (TSSs) using two-color high-harmonic spectroscopy. This Berry phase accumulates along the evolution path of strong field-driven electron-hole quasiparticles in electronic bands with strong spin-orbit coupling. By introducing a secondary weak field, we perturb the evolution of Dirac fermions in TSSs and thus provide access to the Berry phase.
View Article and Find Full Text PDFNanophotonics
August 2024
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong S.A.R., China.
The linear and nonlinear optical properties of metallic nanoparticles have attracted considerable experimental and theoretical research interest. To date, most researchers have focused primarily on exploiting their plasmon excitation enhanced near-field and far-field responses and related applications in sensing, imaging, energy harvesting, conversion, and storage. Among numerous plasmonic structures, nanoparticle dimers, being a structurally simple and easy-to-prepare system, hold significant importance in the field of nanoplasmonics.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2024
Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
The study has demonstrated a novel microcavity-based flexible photon up-conversion system using second harmonic generation (SHG) from a polar nematic fluidic medium doped with a laser dye. The idea is based on coherent light generation via stimulated emission (lasing) and simultaneous frequency doubling inside a microcavity. The polar nematic fluid equips very high even-order optical nonlinearity due to its polar symmetry and large dipole moment along the molecular long axis.
View Article and Find Full Text PDFWhen a two-color Laguerre-Gaussian laser beam propagates through an indium tin oxide (ITO) material, the spatial distributions of odd- and even-order vortex harmonics carrying orbital angular momentum (OAM) are studied. The origin of vortex harmonics can be directly clarified by investigating their dependence on the incident laser field amplitude and frequency. In addition, it is shown that the spectral intensities of vortex harmonics are sensitive to the epsilon-near-zero nonlinear enhancing effects and the thickness of ITO materials.
View Article and Find Full Text PDFSub-optical-cycle electron dynamics in materials driven by intense laser fields can be investigated by high harmonic generation. We observed frequency shift of high harmonic spectrum near the band gap of monolayer MoS experimentally. Through semi-classical quantum trajectory analysis, we demonstrated that the phase of transition dipole moment varies according to the recombination timing and momentum of tunneled electrons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!