Empirical forward scattering phase functions from 0.08 to 16 deg. for randomly shaped terrigenous 1-21 microm sediment grains.

Opt Express

Sequoia Scientific, Inc., 2700 Richards Road, Bellevue, WA 98005, USA.

Published: May 2009

We present in-water forward scattering phase functions covering the angle range 0.08 to 16 degrees for 19 narrow-sized dispersions of randomly shaped sediment grains. These dispersions cover particle size range from 1 to 20 microns. These phase functions offer a realistic alternative to Mie theory. Qualitatively, (i) the magnitude of phase functions at the smallest angles for equal size spheres and randomly shaped particles are nearly equal; (ii) the oscillations predicted by Mie theory for spheres disappear for random shaped grains, and (iii) the tendency of phase functions of large spheres to merge at large angles is also seen with randomly shaped grains. The data are also provided in tabulated form.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.17.008805DOI Listing

Publication Analysis

Top Keywords

phase functions
20
randomly shaped
16
forward scattering
8
scattering phase
8
sediment grains
8
mie theory
8
shaped grains
8
phase
5
functions
5
shaped
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!