Helicobacter pylori requires flagellar motility and orientation to persist actively in its habitat. A particular feature of flagella in most Helicobacter species including H. pylori is a membraneous flagellar sheath. The anti-sigma factor FlgM of H. pylori is unusual, since it lacks an N-terminal domain present in other FlgM homologs, e.g., FlgM of Salmonella spp., whose regulatory function is intimately coupled to its secretion through the flagellar type III secretion system. The aim of the present study was to characterize the localization and secretion of the short H. pylori FlgM in the presence of a flagellar sheath and to elucidate its interaction with other flagellar proteins, such as the basal body protein FlhA, which was previously shown to cooperate with FlgM for regulation. H. pylori FlgM was only released into the medium in minor amounts in wild-type bacteria, where the bulk amount of the protein was retained in the cytoplasm. Some FlgM was detected in the flagellar fraction. FlgM was expressed in flhA mutants and was less soluble and differentially localized in bacterial fractions of the flhA mutant in comparison to wild-type bacteria. FlgM-green fluorescent protein and FlgM-V5 translational fusions were generated and expressed in H. pylori. FlgM displayed a predominantly polar distribution and interacted with the C-terminal domain of FlhA (FlhA(C)). We suggest that, in H. pylori, FlgM secretion may not be paramount for its regulatory function and that protein interactions at the flagellar basal body may determine the turnover and localization of functional FlgM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715733PMC
http://dx.doi.org/10.1128/JB.00018-09DOI Listing

Publication Analysis

Top Keywords

pylori flgm
16
flgm
12
basal body
12
helicobacter pylori
8
anti-sigma factor
8
factor flgm
8
flagellar
8
flagellar basal
8
body protein
8
protein flha
8

Similar Publications

Adherence of Helicobacter pylori to the gastric epithelial cell line AGS strongly induces expression of fliK encoding a flagellar hook-length control protein. FliK has a role in triggering dissociation of the alternate sigma factor, σ(28), from a nonfunctional σ(28)-FlgM complex, releasing free, functional σ(28). The σ(28)-RNA polymerase initiates transcription of cagA, the major virulence gene, from a promoter identified in this study.

View Article and Find Full Text PDF

Helicobacter pylori requires flagellar motility and orientation to persist actively in its habitat. A particular feature of flagella in most Helicobacter species including H. pylori is a membraneous flagellar sheath.

View Article and Find Full Text PDF

The genome of the gastric pathogen Helicobacter pylori contains a homologue of the gene luxS, which has been shown to be responsible for production of the quorum-sensing signal autoinducer 2 (AI-2). We report here that deletion of the luxS gene in strain G27 resulted in decreased motility on soft agar plates, a defect that was complemented by a wild-type copy of the luxS gene and by the addition of cell-free supernatant containing AI-2. The flagella of the luxS mutant appeared normal; however, in genetic backgrounds lacking any of three flagellar regulators--the two-component sensor kinase flgS, the sigma factor sigma28 (also called fliA), and the anti-sigma factor flgM--loss of luxS altered flagellar morphology.

View Article and Find Full Text PDF

Helicobacter pylori is a human gastric pathogen which is dependent on motility for infection. The H. pylori genome encodes a near-complete complement of flagellar proteins compared to model enteric bacteria.

View Article and Find Full Text PDF

Protein-protein interaction of HP137 with histidine kinase HP244 does not contribute to flagellar regulation in Helicobacter pylori.

Microbiol Res

August 2005

Theodor-Boveri-Institut für Biowissenschaften, Universität Würzburg, Lehrstuhl für Mikrobiologie, Am Hubland, D-97074 Würzburg, Germany.

Flagellar motility is essential for the ability of Helicobacter pylori to colonize the gastric mucosa. Expression of the flagella is controlled by a complex regulatory cascade involving the two-component system FlgR-HP244, the sigma factors sigma54 and sigma28 and the anti-sigma28 factor FlgM. The protein-protein interaction map of H.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!