In recent years, a lot of efforts have been made in conformational epitope prediction as antigen proteins usually bind antibodies with an assembly of sequentially discontinuous and structurally compact surface residues. Currently, only a few methods for spatial epitope prediction are available with focus on single residue propensity scales or continual segments clustering. In the method of SEPPA, a concept of 'unit patch of residue triangle' was introduced to better describe the local spatial context in protein surface. Besides that, SEPPA incorporated clustering coefficient to describe the spatial compactness of surface residues. Validated by independent testing datasets, SEPPA gave an average AUC value over 0.742 and produced a successful pick-up rate of 96.64%. Comparing with peers, SEPPA shows significant improvement over other popular methods like CEP, DiscoTope and BEpro. In addition, the threshold scores for certain accuracy, sensitivity and specificity are provided online to give the confidence level of the spatial epitope identification. The web server can be accessed at http://lifecenter.sgst.cn/seppa/index.php. Batch query is supported.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2703964 | PMC |
http://dx.doi.org/10.1093/nar/gkp417 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!