Trichuris arvicolae and T. muris are gastro-intestinal nematodes of respectively arvicoline and murine rodents. We aim to investigate the ecology of these Trichuris species using population genetics. We sampled nematodes from rodents trapped in the East of France. After confirming the species identification of the nematodes using ITS1-5.8S-ITS2 ribosomal DNA sequences, we isolated and characterized twelve dinucleotide microsatellite loci in T. arvicolae. A multiplex panel was developed. Application to a set of 30 individuals allowed clear and easy characterization of allele sizes. The number of alleles ranged from 2 to 6 per locus with observed heterozygosities ranging from 0 to 0.93. A test on eleven T. muris revealed that eight loci among twelve amplified, and five were polymorphic. These sets of microsatellite loci provide high throughput capacity for population genetic studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molbiopara.2009.05.007DOI Listing

Publication Analysis

Top Keywords

microsatellite loci
12
trichuris arvicolae
8
characterization pcr
4
pcr multiplexing
4
multiplexing polymorphic
4
polymorphic microsatellite
4
loci
4
loci whipworm
4
whipworm trichuris
4
arvicolae parasite
4

Similar Publications

Assessing Genetic Diversity and Population Structure of Western Honey Bees in the Czech Republic Using 22 Microsatellite Loci.

Insects

January 2025

Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.

To date, no study has been conducted to investigate the diversity in honeybee populations of in the Czech Republic. Between 2022 and 2023, worker bees were collected from colonies distributed throughout the Czech Republic in 77 districts, and their genetic differences were examined using 22 microsatellite loci. The samples were obtained from hives ( = 3647) and through the process of capture on flowers ( = 553).

View Article and Find Full Text PDF

Population Genetics of in China Inferred Through EST-SSR Markers.

Genes (Basel)

January 2025

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.

Background/objectives: The Pacific abalone originated in cold waters and is an economically important aquaculture shellfish in China. Our goal was to clarify the current status of the genetic structure of Pacific abalone in China.

Methods: In this study, eighteen polymorphic EST-SSR loci were successfully developed based on the hemolymph transcriptome data of Pacific abalone, and thirteen highly polymorphic EST-SSR loci were selected for the genetic variation analysis of the six populations collected.

View Article and Find Full Text PDF

Microsatellite markers are widely used in aquaculture for genetic analysis and breeding programs, but challenges such as segregation distortion and allelic instability can impact their effectiveness in parentage verification and inheritance studies. This study evaluated 15 microsatellite loci in seven experimental olive flounder () families bred through 1:1 full-sibling crosses, assessing their utility for accurate parentage and inheritance stability. Parentage assignments were conducted within an expanded pool of 647 candidate parents (including the actual 14 parents), encompassing both closely related and moderately distant individuals.

View Article and Find Full Text PDF

Assessments of genetic diversity, structure, history, and effective population size ( ) are critical for the conservation of imperiled populations. The lesser prairie-chicken () has experienced declines due to habitat loss, degradation, and fragmentation in addition to substantial population fluctuations with unknown effects on genetic diversity. Our objectives were to: (i) compare genetic diversity across three temporally discrete sampling periods (2002, 2007-2010, and 2013-2014) that are characterized by low or high population abundance; (ii) examine genetic diversity at lek and lek cluster spatial scales; (ii) identify potential bottlenecks and characterize genetic structure and relatedness; and (iii) estimate the regional .

View Article and Find Full Text PDF

Background: Broussonetia papyrifera, B. monoica, and B. kaempferi belong to the genus Broussonetia (Moraceae).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!