To further characterize the immune response elicited by two live Newcastle disease vaccines, humoral, cellular and mucosal immunity was evaluated after oculo-nasal vaccination of day-old chickens. The preferential replication sites for each vaccine strain were investigated by screening different tissues using quantitative real-time reverse transcription-polymerase chain reaction (QRRT-PCR). The interference of maternally derived antibody with vaccination was also considered in conventional layer chickens. In SPF chickens, similar humoral immune-response was measured in blood and tears but a differential profile of cell-mediated immunity was observed according to the vaccine strain. The lung-associated humoral immunity was higher with the tracheotropic strain while the enterotropic vaccine induced a more important specific immunity in the digestive tract. The presence of maternally derived antibody in conventional layer chickens limited, if not completely abrogated, their immune responses to vaccination. This study increases our understanding of the protective immune response against Newcastle disease virus (NDV) and provides new useful informations for the development and evaluation of new types of vaccines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2009.03.068DOI Listing

Publication Analysis

Top Keywords

conventional layer
12
newcastle disease
12
mucosal immunity
8
oculo-nasal vaccination
8
live newcastle
8
disease vaccines
8
immune response
8
vaccine strain
8
maternally derived
8
derived antibody
8

Similar Publications

Atomic-scale changes can significantly impact heterogeneous catalysis, yet their atomic mechanisms are challenging to establish using conventional analysis methods. By using identical location scanning transmission electron microscopy (IL-STEM), which provides quantitative information at the single-particle level, we investigated the mechanisms of atomic evolution of Ru nanoclusters during the ammonia decomposition reaction. Nanometre-sized disordered nanoclusters transform into truncated nano-pyramids with stepped edges, leading to increased hydrogen production from ammonia.

View Article and Find Full Text PDF

The immense energy footprint of desalination and brine treatment is a barrier to a green economy. Interfacial evaporation (IE) offers a sustainable approach to water purification by efficient energy conversion. However, conventional evaporators are susceptible to fluctuations in solar radiation and the salinity of handling liquid.

View Article and Find Full Text PDF

3D Printed Biomimetic Bilayer Limbal Implants for regeneration of the Corneal Structure in Limbal Stem Cell Deficiency.

Acta Biomater

January 2025

Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China. Electronic address:

Limbal stem cell deficiency (LSCD) causes vision loss and is often treated by simple corneal epithelial cell transplantation with poor long-term efficiency. Here, we present a biomimetic bilayer limbal implant using digital light processing 3D printing technology with gelatin methacrylate (GelMA) and poly (ethylene glycol) diacrylate (PEGDA) bioinks containing corneal epithelial cells (CECs) and corneal stromal stem cells (CSSCs), which can transplant CECs and improve the limbal niche simultaneously. The GelMA/PEGDA hydrogel possessed robust mechanical properties to support surgical transplantation and had good transparency, suitable swelling and degradation rate as a corneal implant.

View Article and Find Full Text PDF

3D bioprinting: Advancing the future of food production layer by layer.

Food Chem

January 2025

Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea; Department of Applied Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea. Electronic address:

3D bioprinting is an advanced manufacturing technique that involves the precise layer-by-layer deposition of biomaterials, such as cells, growth factors, and biomimetic scaffolds, to create three-dimensional living structures. It essentially combines the complexity of biology with the principles of 3D printing, making it possible to fabricate complex biological structures with extreme control and accuracy. This review discusses how 3D bioprinting is developing as an essential step in the creation of alternative food such as cultured meat and seafood.

View Article and Find Full Text PDF

Metal halide perovskites have shown exceptional potential in converting solar energy to electric power in photovoltaics, yet their application is hampered by limited operational stability. This stimulated the development of hybrid layered (two-dimensional, 2D) halide perovskites based on hydrophobic organic spacers, templating perovskite slabs, as a more stable alternative. However, conventional organic spacer cations are electronically insulating, resulting in charge confinement within the inorganic slabs, thus limiting their functionality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!