We have shown that en masse cell migration of fibroblasts on the planar surface results in a radial outward trajectory, and a spatially dependent velocity distribution that decreases exponentially in time towards the single cell value. If the cells are plated on the surface of aligned electrospun fibers above 1 microm in diameter, they become polarized along the fiber, expressing integrin receptors which follow closely the contours of the fibers. The velocity of the cells on the fibrous scaffold is lower than that on the planar surface, and does not depend on the degree of orientation. Cells on fiber smaller than 1 microm migrate more slowly than on the planar surface, since they appear to have a large concentration of receptors. True three-dimensional migration can be observed when plating the droplet on a scaffold comprises of at least three layers. The cells still continue to migrate on the fibers surfaces, as they diffuse into the lower layers of the fibrous scaffold.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2009.05.013 | DOI Listing |
Materials (Basel)
January 2025
Department of Physics, Clarkson University, Potsdam, NY 13699-5820, USA.
Chemical mechanical planarization (CMP) is a technique used to efficiently prepare defect-free, flat surfaces of stainless steel (SS) foils and sheets that are implemented in various modern devices. CMP uses (electro)chemical reactions to structurally weaken the surface layers of a workpiece for easy removal by low-pressure mechanical abrasion. Using a model CMP system of 316/316L stainless steel (SS) in an acidic (pH = 3.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Microelectronics and Artificial Intelligence, Kaili University, Kaili 556011, China.
From the discovery of carbon nanotubes to the ability to prepare high-purity semiconductor carbon nanotubes in large quantities, the large-scale fabrication of carbon nanotube transistors (CNT) will become possible. In this paper, a carbon nanotube transistor featuring a buried-gate structure, employing an etching process to optimize the surface flatness of the device and enhance its performance, is presented. This CNT thin-film transistor has a current switching ratio of 10, a threshold voltage of around 1 V, and a mobility that can reach 6.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Power Solutions Group, Onsemi, Scottsdale, AZ 85250, USA.
Trench MOS Barrier Schottky (TMBS) rectifiers offer superior static and dynamic electrical characteristics when compared with planar Schottky rectifiers for a given active die size. The unique structure of TMBS devices allows for efficient manipulation of the electric field, enabling higher doping concentrations in the drift region and thus achieving a lower forward voltage drop (VF) and reduced leakage current (IR) while maintaining high breakdown voltage (BV). While the use of trenches to push electric fields away from the mesa surface is a widely employed concept for vertical power devices, a significant gap exists in the analytical modeling of this effect, with most prior studies relying heavily on computationally intensive numerical simulations.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
College of Mechanical & Electrical Engineering, Central South University, Changsha 410083, China.
In the health monitoring and safety assessments of concrete structures, ultrasonic non-destructive testing (NDT) technology has become an indispensable tool due to its non-destructive nature, efficiency, and precision. However, when used in inspecting irregular concrete surfaces, traditional planar ultrasonic transducers often encounter energy loss and signal attenuation induced by poor interface coupling, which significantly reduces the accuracy and reliability of the test results. To address this problem, this article proposes a point-contact dry coupling ultrasonic transducer solution, which enables efficient acquisition of ultrasonic signals within concrete without the need for couplants.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Center of Excellence for Thin-Film Research and Surface Engineering (CETRASE), Department of Electrical and Computer Engineering, University of Dayton, Dayton, OH 45469, USA.
This paper explores the potential of phase change materials (PCM) for dynamically tuning the frequency response of a dumbbell u-slot defected ground structure (DGS)-based band stop filter. The DGSs are designed using co-planar waveguide (CPW) line structure on top of a barium strontium titanate (BaSrTiO) (BST) thin film. BST film is used as the high-dielectric material for the planar DGS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!