The strategy developed aims to favor the vascular effect of photodynamic therapy (PDT) by targeting tumor vasculature. This approach is considered by coupling a photosensitizer (PS) to an heptapeptide targeting neuropilin-1 (NRP-1). We previously demonstrated that this new conjugated PS, which binds to recombinant NRP-1 protein, was a much more potent PS compared to the non-conjugated PS in human umbilical vein endothelial cells (HUVEC) expressing NRP-1, due to the coupling of the peptide moiety. To argue the involvement of NRP-1 in the conjugated PS cellular uptake, MDA-MB-231 breast cancer cells were used, strongly over-expressing NRP-1 receptor, and we evidenced a significant decrease of the conjugated PS uptake after RNA interference-mediated silencing of NRP-1. In mice xenografted ectopically with U87 human malignant glioma cells, we demonstrated that only the conjugated PS allowed a selective accumulation in endothelial cells lining tumor vessels. Vascular endothelial growth factor (VEGF) plasma and tumor levels could not prevent the recognition of the conjugate by NRP-1. The vascular effect induced by the conjugated PS, was characterized by a reduction in tumor blood flow around 50% during PDT. In vivo, the photodynamic efficiency with the conjugated PS induced a statistically significant tumor growth delay compared to the non-coupled PS. The peptide-conjugated chlorin-type PS uptake involves NRP-1 and this targeting strategy favors the vascular effect of PDT in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2009.04.008 | DOI Listing |
Int J Mol Sci
October 2015
LCPM UMR 7375, CNRS, ENSIC, 1 rue Grandville, BP 20451-54001 Nancy Cedex, France.
Photodynamic therapy (PDT) is a cancer treatment modality that requires three components, namely light, dioxygen and a photosensitizing agent. After light excitation, the photosensitizer (PS) in its excited state transfers its energy to oxygen, which leads to photooxidation reactions. In order to improve the selectivity of the treatment, research has focused on the design of PS covalently attached to a tumor-targeting moiety.
View Article and Find Full Text PDFJ Photochem Photobiol B
August 2009
Centre de Recherche en Automatique de Nancy (CRAN), Nancy-University, CNRS, Centre Alexis Vautrin, Vandoeuvre-lès-Nancy, France.
The strategy developed aims to favor the vascular effect of photodynamic therapy (PDT) by targeting tumor vasculature. This approach is considered by coupling a photosensitizer (PS) to an heptapeptide targeting neuropilin-1 (NRP-1). We previously demonstrated that this new conjugated PS, which binds to recombinant NRP-1 protein, was a much more potent PS compared to the non-conjugated PS in human umbilical vein endothelial cells (HUVEC) expressing NRP-1, due to the coupling of the peptide moiety.
View Article and Find Full Text PDFDrug Metab Dispos
May 2007
Centre Alexis Vautrin-CRAN, Unité Mixte de Recherche 7039 Centre National de la Recherche Scientifique-UHP-INPL Nancy-University, Vandoevre-lès-Nancy, France.
Because angiogenic endothelial cells of the tumor vasculature represent an interesting target to potentiate the antivascular effect of photodynamic therapy, we recently described the conjugation of a photosensitizer [5-(4-carboxyphenyl)-10,15,20-triphenylchlorin (TPC)], via a spacer [6-aminohexanoic acid (Ahx)], to a vascular endothelial growth factor receptor-specific heptapeptide [H-Ala-Thr-Trp-Leu-Pro-Pro-Arg-OH (ATWLPPR)] and showed that TPC-Ahx-ATWLPPR binds to neuropilin-1. Because peptides often display low stability in biological fluids, we examined the in vivo and in vitro stability of this conjugate by high-performance liquid chromatography and matrix-assisted laser desorption ionization/time of flight mass spectrometry. TPC-Ahx-ATWLPPR was stable in vitro in human and mouse plasma for at least 24 h at 37 degrees C but, following i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!