Characterization of Junín virus particles inactivated by a zinc finger-reactive compound.

Virus Res

Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina.

Published: July 2009

Our previous studies reported the inhibitory action against arenaviruses of antiretroviral zinc finger-reactive compounds provided by the National Cancer Institute (USA). These compounds were able to inactivate virions as well as to reduce virus yields from infected cells. Here, the inactivation of the arenavirus Junín (JUNV), agent of Argentine hemorrhagic fever, by the aromatic disulfide NSC20625 was analyzed. The treatment of purified JUNV with this compound eliminated infectivity apparently through irreversible modifications in the matrix Z protein detected by: (a) alterations in the electrophoretic migration profile of Z under non-reducing conditions; (b) an electrodense labeling in the internal layer beneath the envelope and around the matrix Z protein, in negatively stained preparations; (c) changes in the subcellular localization of Z in cells transfected with a recombinant fusion protein JUNVZ-eGFP. The infection of Vero cells with JUNV inactivated particles was blocked at the uncoating of viral nucleocapsid from endosomes, providing new evidence for a functional role of Z in this stage of arenavirus cycle. Furthermore, the inactivated JUNV particles retained the immunoreactivity of the surface glycoprotein GP1 suggesting that this disulfide may be useful in the pursuit of an inactivating agent to obtain a vaccine antigen or diagnostic tool.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virusres.2009.03.010DOI Listing

Publication Analysis

Top Keywords

zinc finger-reactive
8
matrix protein
8
characterization junín
4
junín virus
4
virus particles
4
particles inactivated
4
inactivated zinc
4
finger-reactive compound
4
compound previous
4
previous studies
4

Similar Publications

Targeting of arenavirus RNA synthesis by a carboxamide-derivatized aromatic disulfide with virucidal activity.

PLoS One

January 2015

Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.

Several arenaviruses can cause severe hemorrhagic fever (HF) in humans, representing a public health threat in endemic areas of Africa and South America. The present study characterizes the potent virucidal activity of the carboxamide-derivatized aromatic disulfide NSC4492, an antiretroviral zinc finger-reactive compound, against Junín virus (JUNV), the causative agent of Argentine HF. The compound was able to inactivate JUNV in a time and temperature-dependent manner, producing more than 99 % reduction in virus titer upon incubation with virions at 37 °C for 90 min.

View Article and Find Full Text PDF

An antiviral disulfide compound blocks interaction between arenavirus Z protein and cellular promyelocytic leukemia protein.

Biochem Biophys Res Commun

March 2010

Laboratory of Virology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires, 1428 Buenos Aires, Argentina.

The promyelocytic leukemia protein (PML) forms nuclear bodies (NB) that can be redistributed by virus infection. In particular, lymphocytic choriomeningitis virus (LCMV) influences disruption of PML NB through the interaction of PML with the arenaviral Z protein. In a previous report, we have shown that the disulfide compound NSC20625 has antiviral and virucidal properties against arenaviruses, inducing unfolding and oligomerization of Z without affecting cellular RING-containing proteins such as the PML.

View Article and Find Full Text PDF

Background: Infectivity of retroviruses such as HIV-1 and MuLV can be abrogated by compounds targeting zinc finger motif in viral nucleocapsid protein (NC), involved in controlling the processivity of reverse transcription and virus infectivity. Although a member of a different viral family (Pneumoviridae), respiratory syncytial virus (RSV) contains a zinc finger protein M2-1 also involved in control of viral polymerase processivity. Given the functional similarity between the two proteins, it was possible that zinc finger-reactive compounds inactivating retroviruses would have a similar effect against RSV by targeting RSV M2-1 protein.

View Article and Find Full Text PDF

Characterization of Junín virus particles inactivated by a zinc finger-reactive compound.

Virus Res

July 2009

Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina.

Our previous studies reported the inhibitory action against arenaviruses of antiretroviral zinc finger-reactive compounds provided by the National Cancer Institute (USA). These compounds were able to inactivate virions as well as to reduce virus yields from infected cells. Here, the inactivation of the arenavirus Junín (JUNV), agent of Argentine hemorrhagic fever, by the aromatic disulfide NSC20625 was analyzed.

View Article and Find Full Text PDF

Arenavirus Z protein as an antiviral target: virus inactivation and protein oligomerization by zinc finger-reactive compounds.

J Gen Virol

May 2006

Laboratory of Virology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina.

Several disulfide-based and azoic compounds have shown antiviral and virucidal properties against arenaviruses in virus yield-inhibition and inactivation assays, respectively. The most effective virucidal agent, the aromatic disulfide NSC20625, was able to inactivate two strains of the prototype arenavirus species Lymphocytic choriomeningitis virus (LCMV). Inactivated viral particles retained the biological functions of the virion envelope glycoproteins in virus binding and uptake, but were unable to perform viral RNA replication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!