We present a time-resolved (gated) luminescence-based method for determination of Cu2+ ions in microtiterplate format in the nanomolar concentration range using the novel long-lived terbium-[1-methyl-4-hydroxy-3-(N-2-ethyl-5-aminothiadiazolyl-)-carbamoyl-quinoline-2-one] (TbL) complex. The probe works best in Tb:L = 1:2 stoichiometry at neutral pH. The dynamic range is from 10 to 300 nmol L(-1) of Cu2+ and the limit of detection is 4.3 nmol L(-1). This is the lowest limit of detection achieved so far for luminescent lanthanide-based probes for copper. It is shown that gating can efficiently suppress intense, short decaying background fluorescence e.g. that of Rhodamine 6G. The assay can be performed by measurement of luminescence decay time, as well. Stern-Volmer studies indicate that static quenching dominates over dynamic quenching. TbL2 was tested for the effect of some relevant interferents and the assay was applied to the determination of copper in tap water samples. The results achieved were in good agreement with those of a reference method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2009.04.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!