A series of poly(benzyl ether) dendrons, up to the fourth generation, decorated in their periphery with dimethyl esters were divergently synthesized and fully characterized. These dendrons were found to be unprecedented highly efficient organogelators toward various aromatic and polar organic solvents with the critical gelator concentration (CGC) approaching 2.2 mg/mL. The gelation ability was found to be highly dependent on the nature of the peripheral groups, dendron generation, and the dendritic architecture. The large monodisperse dendron G(4) with a globular shape could also form stable gels in several aromatic solvents with relatively high CGCs. A number of experiments (SEM, TEM and AFM imaging, X-ray crystal structure analysis, concentration- and temperature-dependent (1)H NMR spectroscopy, fluorescence spectroscopy, and powder X-ray diffraction) confirmed the self-aggregation of these dendrons, despite the lack of any conventional gelating motifs such as amides, long alkyl side chains, and steroidal groups. The multiple strong pi-pi stacking interactions due to the peripheral dimethyl isophthalate rings and the internal benzyl rings are found to be the key contributor in forming the self-assembled gel.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja901501jDOI Listing

Publication Analysis

Top Keywords

polybenzyl ether
8
ether dendrons
8
unprecedented highly
8
highly efficient
8
efficient organogelators
8
peripherally dimethyl
4
dimethyl isophthalate-functionalized
4
isophthalate-functionalized polybenzyl
4
dendrons
4
dendrons kind
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!