The rhodium-catalyzed 1,4-addition of arylboronic acids to an enantiopure heterocyclic acceptor proceeds under ligand control to effect an asymmetric synthesis of functionalized pyrrolizidinones. The protocol allows convenient access to all four stereoisomers of pyrrolizidinone 3a (Ar = Ph) by appropriate selection of substrate and catalyst.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ol900843a | DOI Listing |
Anal Chem
January 2025
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
This study tackles the challenge of enantiodifferentiation of nitrile compounds, which is typically difficult to resolve using nuclear magnetic resonance (NMR) due to the significant distance between the chiral center and the nitrogen atom involved in molecular interactions. We have developed novel chiral F-labeled probes, each featuring two chiral centers, to exploit the "match-mismatch" effect, thereby enhancing enantiodiscrimination. This strategy effectively differentiates chiral analytes with quaternary chiral carbon centers as well as those with similar substituents at the chiral center.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Graft-through ring-opening metathesis polymerization (ROMP) of norbornene-terminated macromonomers (MMs) prepared using various polymerization methods has been extensively used for the synthesis of bottlebrush (co)polymers, yet the potential of ROMP for the synthesis of MMs that can subsequently be polymerized by graft-through ROMP to produce new bottlebrush compositions remains untapped. Here, we report an efficient "ROMP-of-ROMP" method that involves the synthesis of norbornene-terminated poly(norbornene imide) (PNI)-based MMs that, following ROMP, provide new families of bottlebrush (co)polymers and "brush-on-brush" hierarchical architectures. In the bulk state, the organization of the PNI pendants drives bottlebrush backbone extension to enable rapid assembly of asymmetric lamellar morphologies with large asymmetry factors.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China.
In our previous studies of metal nanoparticle growth, we have come to realize that the dynamic interplay between ligand passivation and metal deposition, as opposed to static facet control, is responsible for focused growth at a few active sites. In this work, we show that the same underlying principle could be applied to a very different system and explain the abnormal growth modes of liquid nanoparticles. In such a liquid active surface growth (LASG), the interplay between droplet expansion and simultaneous silica shell encapsulation gives rise to an active site of growth, which eventually becomes the long necks of nanobottles.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China.
Carboranyl amines are distinct from typical organic amines. Due to the electronic influence of the carborane cage, they have low nucleophilicity and are reluctant to alkylate. Moreover, asymmetric synthesis of chiral carboranes is still in its infancy.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune-411008, India.
We report the stereoselective total synthesis of kavaratamide A, a linear lipodepsipeptide from the cyanobacterium (collected in Kavaratti, India), and its unnatural C25-epimer. The convergent approach employs Keck asymmetric allylation to construct the chiral β-hydroxy carboxylic acid fragment [(3)-HDA; 3-hydroxydecanoic acid], while the peptide unit was assembled from L-Val, -Me-L-Ala, ()-Hiva, and ()-Pr--Me-pyr using well-orchestrated coupling methods to prevent racemization. Modifications to the Keck allylation conditions enabled the synthesis of the C25-epimer with good yield.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!